Parvovirus B19 Infection in Children With Arterial Ischemic Stroke

Heather J. Fullerton, MD, MAS; Jorge M. Luna, MS, MPH, MPhil; Max Wintermark, MD; Nancy K. Hills, PhD; Rafal Tokarz, PhD; Ying Li, MD; Carol Glaser, DVM, MD; Gabrielle A. DeVeber, MD, MSc; W. Ian Lipkin, MD; Mitchell S.V. Elkind, MD, MS; and the VIPS Investigators*

Background and Purpose—Case–control studies suggest that acute infection transiently increases the risk of childhood arterial ischemic stroke. We hypothesized that an unbiased pathogen discovery approach utilizing MassTag–polymerase chain reaction would identify pathogens in the blood of childhood arterial ischemic stroke cases.

Methods—The multicenter international VIPS study (Vascular Effects of Infection in Pediatric Stroke) enrolled arterial ischemic stroke cases, and stroke-free controls, aged 29 days through 18 years. Parental interview included questions on recent infections. In this pilot study, we used MassTag–polymerase chain reaction to test the plasma of the first 161 cases and 34 controls enrolled for a panel of 28 common bacterial and viral pathogens.

Results—Pathogen DNA was detected in no controls and 14 cases (8.7%): parvovirus B19 (n=10), herpesvirus 6 (n=2), adenovirus (n=1), and rhinovirus 6C (n=1). Parvovirus B19 infection was confirmed by serologies in all 10; infection was subclinical in 8. Four cases with parvovirus B19 had underlying congenital heart disease, whereas another 5 had a distinct arteriopathy involving a long-segment stenosis of the distal internal carotid and proximal middle cerebral arteries.

Conclusions—Using MassTag–polymerase chain reaction, we detected parvovirus B19—a virus known to infect erythrocytes and endothelial cells—in some cases of childhood arterial ischemic stroke. This approach can generate new, testable hypotheses about childhood stroke pathogenesis. (Stroke. 2017;48:2875-2877. DOI: 10.1161/STROKEAHA.117.018272.)

Key Words: case–control studies ■ carotid artery, internal ■ heart diseases ■ middle cerebral artery ■ parvovirus B19, human ■ polymerase chain reaction ■ stroke

Mounting evidence suggests that common infections transiently increase risk for childhood arterial ischemic stroke (AIS), perhaps by causing an inflammatory state that promotes coagulation or endothelial injury. The NIH-funded VIPS study (Vascular Effects of Infection in Pediatric Stroke) confirmed a robust association between infection in the prior week and childhood AIS; the most common prestroke infections were upper respiratory (present in 50%).1 Serological assays for herpesviruses demonstrated a high prevalence of acute, mostly subclinical herpes infections.2

These findings present a paradox: childhood infection is common, whereas childhood stroke is rare. Although one possible explanation is an idiosyncratic immune response to infection contributing to stroke pathogenesis, another possibility is that unusual infections or combination of infections increase stroke risk. Although VIPS focused on herpesviruses, other infections could conceivably play a role. New MassTag–polymerase chain reaction (PCR) techniques allow for efficient, simultaneous testing for a large number of pathogens. We performed a pilot study using this unbiased pathogen discovery approach to generate new hypotheses about the role of infection in childhood AIS.

Methods
The VIPS network of 37 enrolling sites enrolled and centrally confirmed 355 AIS cases and 354 stroke-free controls (2009–2014).1–3 Trauma controls, frequency matched on age, were children presenting with minor trauma and undergoing venous access for clinical purposes. We collected blood samples within 3 weeks of the stroke or at the time of enrollment in controls. Approval was obtained from ethics review committees at each site.

For this pilot study, we selected plasma samples from the first 161 cases and 34 trauma controls enrolled into VIPS and used MassTag PCR for DNA and RNA to detect 28 common childhood respiratory pathogens (Methods in the online-only Data Supplement).4 We confirmed infection by performing standard serologies (IgG and IgM) to detect an immune response to the pathogen.

Received June 6, 2017; final revision received July 7, 2017; accepted August 1, 2017.
From the Department of Neurology (H.J.F.), Department of Pediatrics (H.J.F.), and Department of Biostatistics and Epidemiology (N.K.H.), University of California, San Francisco; Department of Epidemiology (J.M.L., R.T., W.I.L., M.S.V.E.) and Department of Neurology (M.S.V.E.), Columbia University College of Physicians and Surgeons, New York, NY; Department of Radiology, Stanford University, Palo Alto, CA (M.W., Y.L.); Department of Pediatrics (Infectious Disease), Kaiser Permanente, Oakland, CA (C.G.); and Department of Neurology, Hospital for Sick Children, Toronto, Canada (G.A.D.).
*A list of all VIPS Investigators is given in the Appendix in the online-only Data Supplement

The online-only Data Supplement is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA.117.018272/-/DC1.

Correspondence to Mitchell S.V. Elkind, MD, MS, Department of Epidemiology, Columbia University, 710 W 168th St, New York, NY 10032. E-mail mse13@columbia.edu

© 2017 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.117.018272
We used \(\chi^2 \) tests (or Fisher exact, when appropriate) to compare proportions of cases and controls having infection. We combined these data with our previously published herpesvirus serological data to identify combinations of infections.2

Results

The 161 cases (42% female) had a median age of 7.3 years (interquartile range, 1.9–14) and the 34 controls (26% female), a median age of 9.1 years (interquartile range, 2.9–14). Per parental report, 34% of cases versus 21% of controls reported a clinical infection within the prior 4 weeks. Using MassTag PCR, we detected microbes in none of the 34 controls and 14 (8.7%) of 161 cases (\(P=0.06 \)): parvovirus B19 (n=10), human herpesvirus 6 (n=2), adenovirus (n=1), and rhinovirus 6C (n=1). The copy number of parvovirus B19 in the 10 positive cases varied from 1.3 to 11×10^4 per microliter of plasma. All 10 had positive (n=9) or equivocal (n=1) parvovirus B19 IgG serologies confirming infection at some point; 4 had IgM antibodies indicating current or recent infection. Based on parental interview, only 2 of the 10 parvovirus B19 cases had a clinical infection in the prior month; none had slapped check syndrome (Table). Four had severe congenital heart disease; 3 of these had detectable thrombus (intracardiac, n=2; systemic venous, n=1). Five parvovirus B19 cases had a distinct arteriopathy involving a long segment of the intracranial anterior circulation (Figure).

Cases with serological evidence of acute herpesvirus infection were more likely to be positive for another organism on MassTag PCR (Figure I in the online-only Data Supplement): 9 of 56 (16%) herpes-positive cases versus 5 of 105 (5%) herpes-negative cases (\(P=0.015 \)). Seven of the 9 cases with dual infection had parvovirus B19.

Discussion

In this exploratory pilot study, 6% of our cases of childhood AIS had parvovirus B19 infections. This common DNA virus, transmitted via the upper airway, can cause subclinical infection or flu-like symptoms and, in younger children, an exanthema known as slapped cheek syndrome (erythema infectiosum). We found no parvovirus B19 DNA in our
controls; a serum study of 190 healthy individuals similarly identified no parvovirus B19 DNA or IgM antibodies. Prior literature supports the biological plausibility of a link between parvovirus, endothelial injury, and AIS: parvovirus B19 infects erythrocytes and binds to receptors on endothelial cells and has been linked to a wide array of vascular pathologies, including post-transplant vasculitis, mononeuritis multiplex, and, in case reports, AIS in the young. In children with sickle cell disease, stroke is a described complication of parvovirus B19 infection. Half of our parvovirus cases had complex congenital heart disease and cardioembolic stroke and half an arteriopathy involving a long segment of the distal internal carotid artery. We speculate that parvovirus may injure cardiac and arterial endothelium, promoting thrombosis or arterial stenosis. A role for parvovirus B19 in childhood stroke pathogenesis could have treatment implications: complications of parvovirus B19 infections, including parvovirus-associated vasculitis, have been successfully treated with immunomodulatory therapies, including intravenous immune globulin and antitumor necrosis factor-α therapy (etanercept).

Combining these pilot data with our previously published herpes serology data, we found that, in addition to individual infections, certain combinations of pathogens—such as a herpesvirus and parvovirus B19—may be important in childhood AIS. This supports the hypothesis that concurrent infection by multiple pathogens explains the paradox of a common exposure (childhood infection) associated with a rare outcome (childhood stroke).

Limitations of this pilot study include small sample size, potential bias in our control sampling and the inability to test for all pathogens, establish the timing of infections, or study the host immune response. The viremic phase is short after cerebrovascular complications and parvovirus infection in homozygous sickle cell disease. This study was supported by NIH R01 NS062820 (PIs Fullerton, deVeber).

References

Disclosures

None.

Sources of Funding

This study was supported by NIH R01 NS062820 (PIs Fullerton, DeVeber).