Effect of Immune Priming on Borna Disease


Updated information and services can be found at: http://jvi.asm.org/cgi/content/full/73/3/2541

These include:

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more>>
Effect of Immune Priming on Borna Disease

ANN J. LEWIS, 1, 2 J. LINDSAY WHITTON, 3 CAROLYN G. HATALSKI, 2 HERBERT WEISSENBOÈCK, 1, 4 AND W. IAN LIPKIN 1, 2, 5*

Departments of Neurology, 1 Anatomy and Neurobiology, 2 and Microbiology and Molecular Genetics, 5 University of California, Irvine, California 92697-4292; and Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037; and Institute of Pathology, University of Veterinary Medicine, Vienna, Austria 4

Received 23 April 1998/Accepted 30 November 1998

Borna disease virus (BDV) is a neurotropic virus with a broad host and geographic range. Lewis rats were immunized against BDV with a recombinant vaccinia virus expressing the BDV nucleoprotein and were later infected with BDV to evaluate protection against Borna disease (BD). Relative to animals that were not immunized, immunized animals had a decreased viral burden after challenge with infectious virus, more marked inflammation, and aggravated clinical disease. These data suggest that a more robust immune response in Borna disease can reduce viral load at the expense of increased morbidity.

Borna disease (BD) is an immune-mediated neurologic disease affecting a wide range of natural and experimental host species, including rodents, ungulates, and primates (13, 24, 28). BD virus (BDV), the etiological agent of BD, differs from other well-known neuropathogens, such as rabies virus and herpes simplex virus, in its slow, low-level replication (6, 8, 10, 13, 24, 25, 28). In experimentally infected Lewis rats, a well-studied model for BDV pathogenesis, the onset of disease corresponds to the accumulation of inflammatory infiltrates in the central nervous system (CNS) (19). Interestingly, the immune response to BDV fails to clear the infection, the inflammation subsides, and the virus persists at constant levels in the CNS for the life of the host (19). This persistence occurs despite the presence of high levels of neutralizing antibodies in serum and cerebrospinal fluid (12, 19, 26), suggesting that antibody-mediated clearance does not contribute significantly to the immunopathogenesis of BD. Persistence of infectious BDV in the absence of apparent immunosuppression is a fas-

FIG. 1. Infection with VV-N elicits an antibody response. Sera from NI and Imm animals were analyzed by ELISA with recombinant N. Titers of antibody to N were determined at 14, 21, 31, and 36 days following administration of the BDV challenge. A significant difference in titer for those animals immunized compared to those not immunized is indicated by * for P < 0.05 and † for P < 0.005 by Student’s t test.

* Corresponding author. Mailing address: Laboratory for Neurovirology and Microbial Pathogenesis, University of California, Irvine, CA 92697-4292. Phone: (949) 824-6193. Fax: (949) 824-1229. E-mail: ilipkin@uci.edu.
cating feature of BDV molecular biology and immunology. A desire to understand the mechanisms underlying disease severity as well as potential avenues of disease prevention prompted this investigation.

At the most 3' end of the nonsegmented negative-strand RNA BDV genome is an open reading frame (ORF) encoding the nucleoprotein (N) (1, 4, 7). N is the most abundant BDV protein in infected cells and elicits a strong cellular and humoral immune response in infected hosts (3, 16). Because both cellular and humoral immune responses would be expected to play a role in limitation of viral spread and clearance, a vaccinia virus (VV) was chosen as a vector for immunization.

Vaccination with a VV construct expressing a nucleocapsid protein has proven effective in other viral systems (2, 9, 14, 18). The success of other nucleocapsid-based vaccine systems coupled with the abundance and immunogenicity of N supported the selection of N for our first vaccination trial.

A VV construct encoding BDV N (VV-N) was created by introducing the N ORF of BDV strain He/80 (27) into the thymidine kinase gene of wild-type VV by homologous recombination (17). After verification of correct insertion of the N ORF into VV by sequencing, expression was analyzed following infection of HeLa cells. A VV construct containing non-BDV sequence derived from the transfer plasmid pSC11.
VVsc, was generated for use as a control for the specificity of the immune response to VV-N (29). Western blot analysis of extracts from HeLa cells infected with VV-N and VVsc demonstrated the presence of an approximately 38-kDa protein that was immunoreactive with rabbit monospecific sera and was seen in cells infected with VV-N, but not in cells infected with VVs (data not shown).

VV-N and VVsc provided the experimental and control vectors, respectively, for the following immunization strategy. Twelve 4-week-old male Lewis rats (Charles River) were given intraperitoneal inoculations with $10^7$ PFU of VVsc ($n = 2$) or phosphate-buffered saline (PBS) ($n = 5$) for the NI group. Control animals (not-immunized [NI] group). An asterisk indicates that no infectious virus was detected. Error bars indicate the standard error of the mean.

FIG. 3. Infectious virus is reduced in brains of immunized animals. Serial dilutions of a 20% brain homogenate of each NI and Imm animal were added to monolayer of rabbit fetal glial cells to determine viral infectivity in FFU per milliliter. At each time point, $n = 6$ for the NI group and $n = 2$ for the Imm group. An asterisk indicates that no infectious virus was detected. Error bars indicate the standard error of the mean.

TABLE 1. Immunohistochemical characterization of immune infiltrates and expression of MHC antigens and intracerebral IgG

<table>
<thead>
<tr>
<th>Antibody Location</th>
<th>Result for group$^{a}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NL</td>
</tr>
<tr>
<td></td>
<td>31 dpi</td>
</tr>
<tr>
<td>R 7.3 (αβ T-cell receptor)</td>
<td>Meninges</td>
</tr>
<tr>
<td></td>
<td>Perivascular</td>
</tr>
<tr>
<td></td>
<td>Neuropl</td>
</tr>
<tr>
<td>W 3/25 (CD4)</td>
<td>Meninges</td>
</tr>
<tr>
<td></td>
<td>Perivascular</td>
</tr>
<tr>
<td></td>
<td>Neuropl</td>
</tr>
<tr>
<td>Ox 8 (CD8$^{f}$)</td>
<td>Meninges</td>
</tr>
<tr>
<td></td>
<td>Perivascular</td>
</tr>
<tr>
<td></td>
<td>Neuropl</td>
</tr>
<tr>
<td>3.2.3. (NK cells)</td>
<td>Meninges</td>
</tr>
<tr>
<td></td>
<td>Perivascular</td>
</tr>
<tr>
<td></td>
<td>Neuropl</td>
</tr>
<tr>
<td>Anti-IgG$^{d}$</td>
<td>Meninges</td>
</tr>
<tr>
<td></td>
<td>Perivascular</td>
</tr>
<tr>
<td></td>
<td>Neuropl</td>
</tr>
<tr>
<td>Ox 42 (activated microglia)</td>
<td>--</td>
</tr>
<tr>
<td>II.69 (MHC class I)$^{f}$</td>
<td>--</td>
</tr>
<tr>
<td>Ox 6 (MHC class II)$^{f}$</td>
<td>--</td>
</tr>
</tbody>
</table>

$^{a}$ NL, normal (noninfected control); NI, BDV-infected, not vaccinated with BDV N.

$^{b}$ dpi, days postinfection.

$^{c}$ Pronounced meningeal and perivascular staining; focal diffuse parenchymal staining in olfactory cortex, hippocampus, thalamus, and striatum; focal cytoplasmic staining of neurons in hippocampus.

$^{d}$ Staining of microglia as well as T cells.

$^{e}$ Staining of microglia, astrocytes, endothelial cells, inflammatory cells, and occasional neurons.

$^{f}$ Staining of microglia, astrocytes, and inflammatory cells.
in the Imm group was 575 FFU/ml, compared to 14,000 FFU/ml in the NI group (Fig. 3). Decreased levels of viral RNA and infectious virus may be accounted for by two different mechanisms: decreased virus production and spread or increased clearance from or lysis of infected cells. Vaccination may induce these mechanisms alone or in concert to reduce viral load.

Analysis of hematoxylin-and-eosin-stained brain sections revealed mononuclear cell infiltration in the Imm group in both the parenchyma and around blood vessels, becoming prominent by day 31 (Fig. 4). Although perivascular cuffing was visible in NI group brains at days 31 and 36, parenchymal infiltration was less pronounced. Representative sections of hippocampus in Fig. 4 demonstrate enhanced inflammation and marked distortion of normal hippocampal architecture (Fig. 4, day 31, Imm versus NI).

The pathogenic relevance of T cells to BD has been well
established (28). Of particular interest to this investigation was the finding that adoptive transfer of a BDV-N-specific CD4+ cell line can induce prevention or enhancement of the immunopathological disease, with the outcome dependent on the timing of transfer relative to infection (23). The composition of infiltrating inflammatory cells, levels of expression of major histocompatibility complex (MHC) class I and class II antigens, and the distribution of immunoglobulin G (IgG) were assessed immunohistochemically (11) at days 31 and 36 in the brains of Imm and NI animals (Table 1). In general, total numbers of T cells, CD4 cells, CD8 cells, and NK cells were higher in Imm brains than in NI brains at both days 31 and 36 postinfection. The difference between Imm and NI brains was more marked in parenchymal than in meningeal or perivascular infiltrates. Interestingly, numerous microglia were stained by antibodies to Ox 8, a marker for CD8 cells. The numbers of activated microglia were similar in Imm and NI brains. Higher levels of MHC class I and class II antigen expression were observed in Imm brains than in NI brains at day 31; the levels were similar in Imm and NI brains at day 36. Levels of IgG were higher in neuropil in Imm animals.

Clinical scores were assigned to animals by two independent observers, with one point given for the presence of disheveled fur, dystonia, weakness, or paresis. The score for each animal was the average of the scores of the two observers. Both Imm and NI animals showed evidence of illness after day 25. Following onset of clinical signs, the severity of disease increased more rapidly in the Imm group, with the animals becoming moribund and requiring euthanasia at day 36 (Fig. 5). The aggravation in clinical disease was temporally associated with an increase in mononuclear infiltration (Fig. 4 and 5). It was anticipated that inflammation and clinical signs might appear earlier in the Imm group relative to the NI group; however, the onset of clinical symptoms was unchanged (Fig. 5). The 2- to 4-week latency period for disease onset has been observed for all routes of infection (5). Potential factors influencing latency to disease include the total viral burden, anatomical distribution of virus, and potency of the immune response. In the recombinant VV trial presented here, two impacts were plausible: prolongation secondary to the reduced virus titer and shortening secondary to the enhanced strength of the immune response. The unchanged latency in this study may represent a sum of these opposing effects.

Disease exacerbation following immune priming has previously been observed with the T-cell-mediated choriomeningitis caused by lymphocytic choriomeningitis virus (LCMV) (20). In the LCMV system, the balance between immune response and viral spread determines protection from versus exacerbation of disease. Similarly, in BDV, it appears that the relative kinetics of viral replication and spread versus the progression and maturation of the immune response determines the latency, expression, and severity of disease.

An ideal vaccine increases the immune response to a pathogen to limit its replication and spread, thereby lessening or eliminating the disease without causing adverse effects. In this experimental paradigm, immune priming with VV-N resulted in a limitation of viral productivity at the expense of enhanced immune cell infiltration of the CNS and an exacerbation of disease.

Priming of the immune response to N resulted in a substantial reduction in viral gene expression without improving the clinical course of BD. Vaccination strategies aimed at pathogens that cause immune-mediated CNS disease present unique challenges for the achievement of enhanced immune responses that lead to protection without exacerbation of disease. A greater understanding of the factors controlling BD latency, viral gene expression, viral spread, and host strain differences will be critical to establishing effective vaccines for BDV.
We thank Uyen Ngo for superb technical assistance and Bill Hickey and Marylou Solbrig for valuable comments.

Support for this project was provided by the M.D.-Ph.D. program at the University of California—Irvine (A.J.L.) and NIH awards NS29425 (W.I.L., C.G.H.) and AI-27028 (J.L.W.). H.W. is the recipient of an Erwin Schrödinger Stipend from the Republic of Austria.

REFERENCES