Jeff Goldsmith

Jeff Goldsmith

Jeff Goldsmith

Assistant Professor


722 W 168th Street, Rm 630
New York NY US 10032
Website address: Email: CV:


Jeff Goldsmith is an assistant professor in Biostatistics at the Columbia University Mailman School of Public Health. Dr. Goldsmith joined Columbia after receiving his PhD in Biostatistics from Johns Hopkins in 2012, where his dissertation focused on statistical methods for high-dimensional structured data. Dr. Goldsmith has research interests in scientific domains including neuroimaging, physical activity monitoring using accelerometers, motion kinematics and motor learning, and urban environments. In these domains, he develops statistical methods that examine relationships between complex data structures and patient-level information; examples include using MRI scans to predict patient function and examining effects of aging on daily activity patterns.


PhD, 2012, Johns Hopkins School of Public Health
BS, 2007, Dickinson College

Mailman Affiliations

Member, Obesity Prevention Initiative

Select Publications

Goldsmith J, Huang L, Crainiceanu C M (2014). Smooth Scalar-on-Image Regression via Spatial Bayesian Variable Selection. Journal of Computational and Graphical Statistics, 23 46-64.
Goldsmith J, Scheipl F (2014). Estimator Selection and Combination in Scalar-on-Function Regression. Computational Statistics and Data Analysis, 70 362-372.
Goldsmith J, Greven S, Crainiceanu C M, (2013). Corrected Confidence Bands for Functional Data Using Principal Components. Biometrics, 69 41-51.
Goldsmith, J, Crainiceanu, CM, Caffo, BS, Reich, DS Longitudinal Penalized Functional Regression for Cognitive Outcomes on Neuronal Tract Measurements Journal of the Royal Statistical Society: Series C 61 453-469 2012
Goldsmith, J, Caffo, BS, Crainiceanu, CM, Du, Y, Reich, DS, Hendrix, CW Non-linear Tube Fitting for the Analysis of Anatomical and Functional Structures Annals of Applied Statistics 5 337-363 2011
Goldsmith, J, Bobb, J, Crainiceanu, CM, Caffo, BS, Reich, DS Penalized Functional Regression Journal of Computational and Graphical Statistics 20 830-851 2011
Goldsmith, J, Wand, MP, Crainiceanu, CM Functional Regression via Variational Bayes Electronic Journal of Statistics 5 572-602 2011

Back to Top