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Outline

� Examples, definitions, notation

� Display

� Smoothing

� Functional principal components analysis

� Regression with functional predictors and/or responses
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What is functional data?

Some examples...

Child height as a function of age.
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What is functional data?

Some examples...

Knee angle as children go through a gait cycle.
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What is functional data?

Some examples...

Systolic blood pressure at various ages for 150 subjects.
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What is functional data?

Some examples...

Examples of the S in Shakespeare’s signature

5 of 67



What is functional data?

Some examples...
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Reaching motions made by a stroke patient
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What is functional data?

Some examples...

Curvature and radius of the carotid artery.
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What is functional data?

Some examples...

Brain images.
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Recurring example: DTI
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Tract profiles from diffusion tensor imaging
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What is functional data?

Something like a definition:

“Observations on subjects that you can imagine as Xi(si),
where si is continuous”

Functional notation is conceptual; observations are made on a
finite discrete grid.
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Some characteristics of functional data

The following are sometimes associated with functional data:

� High dimensional

� Temporal and/or spatial structure

� Interpretability across subject domains
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Discretization of functional data

� Conceptually, we regard functional data as being defined
on a continuum, e.g., Xi(t), 0 ≤ t ≤ 1.

� In practice, functional data are observed at a finite number
of points.
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Discretization of functional data

Dense functional data: Often, this is a fine regular grid, i.e.,
xi =

(
Xi
( 1

N

)
,Xi
( 2

N

)
, . . . ,Xi (1)

)
: spectral data, imaging data,

accelerometry, ...
Sparse functional data: In other situations, the points at which
observations are taken are irregular, often random: CD4 count,
blood pressure, etc.

� In such cases, some kind of interpolation is necessary.
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Functional data are technically multivariate data!

Why not just apply multivariate techniques (MANOVA,
clustering, multiple regression, etc.)?

� Any technique for functional data should take into account
the structure of the data — results from multivariate data
analyses are generally permutation-invariant, but results
from functional data analyses should not be!

� Methodological developments in FDA are often extensions
of corresponding multivariate techniques.
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Functional data are often observed with measurement
error

� Xi(t) is smooth (and continuously defined) but we observe

xi =

(
Xi

(
1
N

)
+ ε1,Xi

(
2
N

)
+ ε2, . . . ,Xi (1) + εn

)

� It is common to smooth the data before any analysis (topic
we’ll revisit soon)

� In other situations, accounting for measurement error is
built in to the analysis procedure.
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Comparison across observations

In order for functional data to be comparable across
observations (e.g., across subjects), they must be observed on
the same domain, i.e., t must be the same for X1(t) and X2(t).
In many cases, this is straightforward:

� Spectral data

Problematic for some other situations:

� Growth curves (for adolescents, “growth spurts” may not
line up)

� Brain imaging data (structure is somewhat different from
subject to subject)

In such cases it is often possible to register the data, e.g., using
landmarks or by warping.
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Summary measures for functional data

Suppose we have functional data {Xi(t), t ∈ T , i = 1, . . . ,n}.
Mean: µ(t) = EXi(t).

� The mean is itself functional

� Typically, we assume that the mean is smooth

� “Raw” estimator is sample mean: X̄(t) = 1
n
∑

Xi(t)

� A typical estimator of µ would be a smoothed version of
X̄(t) (more on this later).
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Summary measures for functional data

Suppose we have functional data {Xi(t), t ∈ T , i = 1, . . . ,n}.
Variance:
Σ(s, t) = Cov(X(s),X(t)) = E [(X(s)− µ(s))(X(t)− µ(t))]

� This is a (two-dimensional) surface.

� “Raw” estimator is sample covariance:
Σ̂(s, t) = Cov(Xi(s),Xi(t))

� Would need to smooth this as well.
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Summary measures for functional data
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Summary measures for functional data
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Beyond iid functional data

Although the iid case is quite common, other situations are
possible:
� Multilevel functional data:

I {Xij(t), t ∈ T , i = 1, . . . ,n, j = 1, . . . , Ji}
I Example: repeated motions in gesture data

� Longitudinal functional data:
I {Xij(t, vj), t ∈ T , i = 1, . . . ,n, j = 1, . . . , Ji}
I Example: DTI data (multiple clinical visits)
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Common problems in functional data analysis

Some issues arise regularly in FDA

� Data display and summarization

� Smoothing and interpolation

� Patterns in variability: principal component analysis

� Regression (with functional predictors, outcomes, or both)
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Data display

Lots of tools for displaying data

� Spaghetti plots

� Rainbow plots

� 3D rainbow plots

� Examples for all using DTI data follow; R code is available
online
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Spaghetti plot
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2D rainbow plot
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3D rainbow plot
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Smoothing

Why do we need smoothing?

� Data are often observed with error

� There’s a need to interpolate to a common grid

How are we going to do smoothing?

� Use a known set of basis functions

� Regress observed data onto known basis
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Some common basis functions: Splines
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� Easily defined
derivatives

� Good for smooth data
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Some common basis functions: Wavelets
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“mother wavelet”
function:
ψjk(t) = 2j/2ψ(2jt− k)

� Orthonormal basis

� Particularly good when
there are jumps, spikes,
peaks, etc.

� Wavelet representation
is sparse
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Minimize sum of squares

Suppose we want to smooth a curve Yi(t) observed with error.
We can use

Ŷi(t) =

K∑

k=1

ĉikψk(t).

We only need to estimate the subject-specific scores ĉik;
minimize SSEi with respect to cik, where

SSEi =
∑(

Yi(ti)−
K∑

k=1

cikψk(ti)

)2
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Example
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Tuning

For any curve, many possible smooths are available

� Depends on the spline basis

� Depends on the number of basis functions

� Depends on the estimation procedure

“Tuning” is the process of adjusting the smoother to the data at
hand. This is often implicit.
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Example
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Example
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Penalization

Rather than choosing a smoother “by hand”, we could use a lot
of basis functions but explicitly penalize “wiggliness”

Leads to a penalized SSE:

SSEi =
∑

(Yi(t)−Ψ(t)ci)
2 + λPen(Ψ(t)ci)

� Common penalties are on the derivatives (enforcing
smoothness)

� Need to choose tuning parameter λ
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Data-driven basis

� Previous bases don’t depend on the data; only the loadings
do.

� FPCA gives a “data-driven” basis: it is constructed from
the observed data.

� Looks pretty similar mathematically:

Ŷi(t) =

K∑

k=1

ĉikψk(t).

� Difference is that the ψ aren’t pre-specified.
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Data-driven basis

So where do the basis functions ψ come from?

� Construct covariance matrix Σ

� (Remove main diagonal, smooth)

� Spectral decomposition of Σ produces basis functions ψ
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Data-driven basis

Some properties of FPCA

� The ψ are orthonormal (non-overlapping)

� Also the most parsimonious basis expansion for a given
data set

� Basis functions are often interpretable - describe the major
directions of variability in the observed data
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Example
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Data-driven vs Pre-specified

� Data-driven bases are the most parsimonious for a given
dataset, but may not transfer to new data

� Data-driven often work better for sparse data (borrowing
strength to derive basis functions)

� Pre-specified often have better analytical properties (easily
computed derivatives, known forms)
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Regression modeling with functional data

� Scalar on function regression

� Function on scalar regression

� Function on function regression
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Scalar on function regression: Example scenarios

X = temperature (over time) for the year
Y = total rainfall for one year

X = NIR spectrum
Y = water content of a sample

X = brain image
Y = clinical outcome
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Example data: DTI

xi(s) = fractional anisotropy along the corticospinal tract
Yi = measure of cognitive function
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Linear scalar-on-function regression model

Given data ({x1(s), s ∈ S},Y1), . . . , {xn(s), s ∈ S},Yn), the
scalar-on-function regression model is:

Yi = α+

∫
xi(s)β(s) ds + εi, i = 1, . . . ,n

Interpretation of “coefficient function” β:

� Where β(s) > 0, larger values of xi(s) lead to higher
predicted Y.

� Where β(s) < 0, larger values of xi(s) lead to lower
predicted Y.

� Where β(s) = 0, xi(s) has no effect on Y.
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Coefficient Interpretation
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Scalar-on-function regression:
The need for regularization

But the function xi(s) is only observed at N points!

� xi = (xi(1/N), xi(2/N), . . . , xi(1))T

� β = (β(1/N), β(2/N), . . . , β(1))T

The model becomes

Yi = α+

∫
xi(s)β(s) ds + εi

≈ α+ (1/N)xTβ + εi

If we’re not thinking “functionally”, this is like doing
regression with n observations and N predictors!

To get reasonable fits, we must regularize in some way.
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Basis functions

Possible basis functions: splines, orthogonal polynomials,
principal components, wavelets, etc.

Let

xi(s) =

K∑

k=1

cikψk(s)

β(s) =

K∑

k=1

θkψk(s)

This is now a K-dimensional regression problem.
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Scalar-on-function regression:
Basis function representation

Yi = α+

∫
xi(s)β(s) ds + εi

= α+

∫ ( K∑

`=1

ci`ψ`(s)

)(
K∑

k=1

θkψk(s)

)
ds + εi

= α+

K∑

k=1

[
K∑

`=1

ci`

(∫
ψ`(s)ψk(s) ds

)]
θk + εi

=

K∑

k=1

zkθk + εi
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How to choose K?

K = 2 K = 7 K = 10
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Regularization with roughness penalties

Could choose α and β to minimize

n∑

i=1

(
Yi − α−

∫
xi(s)β(s) dt

)2

+ λ

∫ (
β′′(s)

)2 dt

� First term: (proportional to) mean squared error (MSE):
measures fidelity to the data (how well the model “fits” the
data)

� Second term: measures the smoothness of the coefficient
function
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Example fits with a range of tuning parameters
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How to choose λ?

The tuning parameter λ controls the tradeoff between these.
� If λ is too large, it will result in smooth estimates at the

expense of large MSE (underfitting).
� If λ is too small, the MSE will be small but the estimated β

function will be very wiggly (overfitting).
� Neither one of these will provide good “out of sample”

predictions.
Could choose λ by cross-validation:

CV(λ) =

n∑

i=1

(
Yi − α(i)

λ −
∫

xi(t)β(i)λ (t) dt
)2

Choose λ to minimize CV(λ)

Also: generalized cross-validation (GCV), restricted maximum
likelihood (REML) . . .
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Function on scalar regression: Example scenarios

X = climate zone
Y = temperature (over time)

X = age
Y = activity level (over time)

X = diagnosis
Y = brain image
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Canadian weather data

X = region (Arctic, Atlantic, Continental, Pacific)
Y = temperature (degrees Celsius) over time
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Function on scalar regression

A “functional ANOVA” model:

Yij(s) = µ(s) + αi(s) + εij(s), i = 1, . . . ,n

For identifiability, could constrain that
∑

i αi(s) = 0 for all t.

More generally, given data
(x1, {Y1(s), s ∈ S}), . . . , (xn, {Yn(s), s ∈ S}), where xi is a
p-vector, the function-on-scalar regression model is

Yi(s) = xT
i β(s) + εi(s),

where β(s) = (β1(s), . . . , βp(s)).

57 of 67



Function on scalar regression: data representation

If the functional observations are observed at a grid of points,
say, s1, . . . , sN, then let

Y : n×N = [Yi(sj)], i = 1. . . . ,n, j = 1, . . . ,N.

We could also think about expressing the β functions on the
same grid, i.e., let

B : p×N = [βi(sj)], i = 1, . . . , p; j = 1, . . . ,N.

Expressing the ε’s the same way and writing the X matrix as
usual, the discrete version of the model becomes

Y = XB + E.

This has the same form as multivariate analysis of variance
(MANOVA).
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Function on scalar regression: basis function
representation

Given basis functions ψ1(s), . . . , ψK(s), we could express

Yi(s) =

K∑

k=1

cikψk(s)

βj(s) =

K∑

k=1

θjkψk(s)

The model then becomes

C = XΘ + E
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Fitting by penalizing roughness

Could choose β to minimize

n∑

i=1

∫ (
Yi(s)− xT

i β(s)
)2

dt + λ

p∑

j=1

∫ (
β′′j (s)

)2
dt

More generally, in the discretized space, we could minimize

||Y− XB||+ λ

p∑

j=1

BT
j PBj,

where Bj is the jth row of B.
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Application to Canadian weather data
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Function on function regression: Example scenarios

X = temperature (over time)
Y = precipitation (over time)

X = fractional anisotropy along corpus callosum tract
Y = fractional anisotropy along corticospinal tract

X = hip angle through a gait cycle
Y = knee angle through a gait cycle
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Function on function regression: the model

Given functional data ({x1(s), s ∈ S}, {Y1(t), t ∈
T }), . . . , ({xn(s), s ∈ S}, {Yn(t), t ∈ T }), the model could be
expressed

Yi(t) =

∫
β(s, t)xi(s) ds + εi(t)

The coefficient function in this case is a (two-dimensional)
surface.
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Function on function regression: Example

X1.smat
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Software

� refund package

� fda package

� fda.usc package
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Stuff we haven’t even mentioned

� Inference on functional model parameters

� Model selection, model building

� Alternative penalties

� Model diagnostics and goodness of fit

� “Generalized” versions of functional linear models

� Hierarchical models for functional data

� Supervised/unsupervised classification of functional data

� Functional “depth” and functional boxplots

� Many other topics . . .
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Useful references

� Ferraty and Vieu (2006). Nonparametric Functional Data
Analysis. Springer.

� Ramsay and Silverman (2005). Functional Data Analysis,
Second Edition. Springer.

� Ramsay and Silverman (2002). Appled Functional Data
Analysis. Springer.

� Sørensen, Goldsmith, and Sangalli (2013). An introduction
with medical applications to functional data analysis.
Statistics in Medicine 32:5222-5240.
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