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Abstract

The goal of our article is to provide a transparent, robust, and computationally
feasible statistical approach for testing in the context of scalar-on-function linear
regression models. Assuming linearity between response and predictors, we are in-
terested in testing for the necessity of functional effects. Our methods are motivated
by and applied to a large longitudinal study involving diffusion tensor imaging of
intracranial white matter tracts in a susceptible cohort. In the context of this study,
we conduct hypothesis tests that are motivated by anatomical knowledge and support
recent findings regarding the relationship between cognitive impairment and white
matter demyelination. R-code and data are in the examples of refund::rlrt.pfr().
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1 Introduction

Vast increases in the ability to collect and store functional data have contributed to a

proliferation of approaches for regression models involving functions as predictors. There

are now many competing methods for parameter estimation in the functional linear model

(FLM). However, inferential techniques for these models are less advanced than the estima-

tion procedures. In this manuscript we seek a statistically principled approach to address

whether a functional predictor should be included in a functional linear regression model

for scalar response (equivalently: scalar-on-function regression model), as detailed in Ex-

ample 3 of Chapter 1 in Ferraty and Vieu (2006) and chapter 15 of Ramsay and Silverman

(2005). Our contribution is two likelihood-based tests that correspond to parametric and

semi-parametric models parameterized by coefficient functions. One test has the null of the

coefficient function being exactly zero, which tests the “lack of effect in the functional linear

model”; the other has the null of a constant not necessarily zero. This test for the “lack

of effect in the functional linear model” has been considered nonparametrically (Chapter

9, Horváth and Kokoszka (2012)) and through permutation F -tests (Chapter 9, Ramsay

et al. (2009)).

Our first approach is related to the standard parametric functional principal compo-

nents regression (FPCR) method and uses standard likelihood ratio tests for the functional

coefficient. Next we modify a penalized approach that casts the FLM in a mixed effects

semi-parametric framework and derive likelihood ratio test statistics for variance compo-

nents that restrict the coefficient function to be a constant under the null hypothesis.

We observe data of the form {Yi,X i,Wi(t)} for subjects i ∈ {1, . . . , I}, where Yi is

a continuous scalar outcome of interest, X i are non-functional covariates and Wi(t) for

t ∈ [0, 1] is a functional predictor. The FLM model for data of this form is

E[Yi] = α +X iβ +

∫ 1

0

Wi(s)γ(s)ds (1)

where γ(t) is a coefficient function that weights the functional predictor Wi(t) to appropri-

ately emphasize portions of the curve in the functional contribution (as represented by the

integral) assimilated into the model for scalar outcome Yi. Multiple functional predictors

can be easily considered in an appropriately extended model. Increasingly, studies relating
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functional exposures to scalar outcomes are longitudinal, where over visits j = 1, . . . , J ,

functional exposures Wij(t) are measured along with outcome Yij. In accommodation

of these repeated measures and the consequent clustering, a further extension includes a

subject-specific random effect to account for correlation between repeated scalar observa-

tions Yij across multiple visits.

In testing for functional effects, the following questions have important statistical and

scientific considerations. The framework for answering the questions can be facilitated by

a hypothesis test comparing a null model H0 to a richer, alternative model HA.

• Test of functional form: Is functional structure needed?

A direct and important question in the context of the FLM is whether the functional

structure of observations Wi(t) is needed to explain association with the outcome, or

if a simpler summary of these curves suffices. We therefore wish to test

H0 : E[Yi] = α +X iβ +W iβW (2)

HA : E[Yi] = α +X iβ +

∫ 1

0

Wi(s)γ(s)ds

where W i =
∫ 1

0
Wi(s)ds. Rejecting H0 in favor of HA would indicate that honoring

the functional structure of Wi(t) is worthwhile, while failing to reject would indicate

that the mean conveys all the information that a function has related to the outcome.

An equivalent null hypothesis would be γ(s) = c for some constant c.

• Test of inclusion: Does a functional predictor improve the model?

In the now-common context of multiple functional predictors, a reasonable question

to ask is which (if any) of the predictors are related to the outcome, as in

H0 : E[Yi] = α +X iβ +

∫ 1

0

Wi1(s)γ1(s)ds (3)

HA : E[Yi] = α +X iβ +

∫ 1

0

Wi1(s)γ1(s)ds+

∫ 1

0

Wi2(s)γ2(s)ds.

Rejecting H0 in favor of HA would indicate that including and modeling the func-

tional structure of Wi2(t) is worthwhile in a model selection sense. Investigations into

potential functional confounding, that is the perturbations in the shape of γ1(t) in
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the presence of Wi2(t) (under HA) relative to the absence of Wi2(t) (under H0), are

also possible in this construction. An equivalent null hypothesis would be γ2(s) = 0.

The distinguishing feature in fitting FLMs is modeling the integral in the predictor,

which involves appropriately aggregating and representing the subject-specific Wi(t) so

that a meaningful, shared weighting function γ(t) can be estimated. There are many ways

to do this, two of which are related to the methods we propose: the widely-used functional

principal components regression (FPCR) described in Ramsay and Silverman (2005) and

the penalized functional regression (PFR) approach of Goldsmith et al. (2011). Traditional

FPCR projects functional observations onto a low-dimensional functional principal compo-

nents basis and uses scores as predictors in a standard regression model. The PFR approach

uses a flexible spline basis to express the functional coefficients and induces smoothness

through penalization in a mixed model framework. Here we introduce modifications to

both techniques so that the coefficient function can be reduced to a non-zero constant (cor-

responding to the null hypothesis in (2)). Using these modifications, we develop testing

procedures that address the statistical questions described above for both approaches.

Our motivation for developing this technique is a study that was seeking to relate the

Paced Auditory Serial Addition Test score (PASAT) (Gronwall, 1977) to the microstructure

of intracranial white matter in the the corpus callosum (CCA) and the right corticospinal

tract (RCST) in multiple sclerosis patients (Figure 1). Naturally, a scalar-on-function re-

gression method fitting a FLM would be appropriate: the PASAT is scalar and the CCA

and RCST tracts are functional, comprised of water diffusivity metrics from diffusion ten-

sor imaging on a dense, regular grid of 93 and 55 points, respectively. Subjects were seen

multiple times (2 to 8) and PASAT scores and tract images were collected each visit, lon-

gitudinally. Even though the sampling was functional, whether the effect was functional –

with some locations being hotspots for relating to PASAT or if the whole-tract contributes

to an overall average effect regardless of location – was scientifically unconfirmed. Unprece-

dentedly, test (2) allows this scientific question to be answered in a statistically principled

way. The test is scientifically motivated to guide model selection with evidence from the

data as opposed to choice of convenience (“simple linear regression on averaged functions

are easier to fit and explain”) or heuristics (“the β(t) coefficient function from a FLM is
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Figure 1: The left panel displays the anatomical structures interest: the corpus callosum

is shown in red and the corticospinal tracts in blue. On the right we show the observed

data: in the top four plots are observed corpus callosum tract profiles across four visits; in

the middle four plots are observed right corticospinal tract profiles across four visits; in the

bottom panel is a plot of the longitudinally observed cognitive function outcomes. In all

plots, the data observed for a single subject is highlighted in red. Corpus callosum profiles

are parameterized anterior to posterior. Corticospinal profiles are parameterized inferior

to superior. This figure appears in color in the electronic version of this article.

so dynamic and the confidence bands exclude zero at some locations – it must be signifi-

cant!”). Test (3) allows a slightly different question to be answered in that considering two

functions simultaneously, is one not significantly adding to the fit. In our case, the CCA

is a tract associated with cognitive function (connecting the hemispheres of the brain) and

RCST is mainly involved in motor functioning. Being that PASAT is a cognitive test, do

both a cognitive tract and motor function tract contribute to explaining PASAT variation,

or is solely the cognitive track sufficient? Again, this is a scientific question that motivated

our statistical method development, in turn, the development will enable and facilitate

scientific discovery in a statistically principled way.

The functional data literature contains a rich collection of methods for estimating scalar-

on-function regression models. The following is intended as an overview of functional re-

gression methods and is not exhaustive. FPCR, described above, was an early approach;

later extensions of this basic method imposed explicit penalties on the roughness of the co-
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efficient function (Reiss and Ogden, 2007). A similar collection of techniques uses functional

partial least squares in place of principal components (Goutis and Fearn, 1996; Reiss and

Ogden, 2007). Several penalized spline approaches distinct from PFR have been proposed

(Cardot et al. (2003); Marx and Eilers (1999), see Ferraty et al. (2011) for a discussion on

presmoothing methods). Extensions of the FLM to allow nonlinear effects of functional con-

tributions, similar to generalized additive models, are described in (James and Silverman,

2005; McLean et al., 2012), and the adaptation of single-index regression to functional pre-

dictors is described in (Eilers et al., 2009). Specifically, nonparametric and semi-parametric

extensions have proliferated for this purpose – for an overview, consult Ferraty and Vieu

(2006) (Chen et al., 2011; Ferraty et al., 2012; Aneiros-Pérez and Vieu, 2008; Delsol et al.,

2011). For coherency and focus, herein we assume linear effects of functional contributions

and assume that an interpretable coefficient function is of interest.

Despite the body of work related to estimation for scalar-on-function regression, there

is relatively little work related to inference for coefficient function estimates. Most notably

and recently is a lasso-type functional variable selection based on prediction performance

(Gertheiss et al., 2013). Confidence intervals for functional coefficients in a low-dimension

approach to the FLM have been derived (Müller and Stadtmüller, 2005). For penalized

approaches, bootstrap confidence intervals have been developed (Reiss and Ogden, 2007;

James et al., 2009) and the mixed model framework to construct model-based confidence

intervals have been utilized (Goldsmith et al., 2011). Cardot et al. (2003) develop tests

based on the covariance of the scalar outcome and functional predictor, but do not extend

these tests to consider multiple predictors or longitudinal settings.

Two past approaches have commented on the potential for hypothesis tests in the FLM

through the use of tests for zero variance components, but neither fully developed a method

or study the properties of a hypothesis test (Reiss and Ogden, 2010; Gertheiss et al., 2012)

(the former in the context of scalar-on-image regression). The theory for classical testing for

H0 : γ(s) = 0 in FLM has been developed, but still lacks computational implementability

and the ability to test other null hypotheses Kong et al. (2013). Tests for zero variance

components, as proposed herein, are readily implementable and allow for testing a variety

of null hypotheses.
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Tests for zero variance components have been used in the penalized spline literature.

Penalized-spline additive models are a well-documented semiparametric method enabling

scatterplot smoothing and can be represented and fitted as a mixed model (Ruppert et al.,

2003; Marx and Eilers, 1998; Aerts et al., 2002; Crainiceanu et al., 2005; Wand, 2003;

Ngo and Wand, 2004). Likelihood ratio tests (LRTs) and restricted likelihood ratio tests

(RLRTs) have been theoretically developed and computationally implemented to test the

necessity of the splines against an embedded polynomial regression (Crainiceanu and Rup-

pert, 2004; Greven et al., 2008; Scheipl et al., 2008), as have score tests (Verbeke and

Molenberghs, 2003; Molenberghs and Verbeke, 2007; Zhang and Lin, 2003; Tzeng and

Zhang, 2007; Zhang and Lin, 2008) and a Wald-type test (Wood, 2012). Because (R)LRTs

and score tests are asympotically equivalent selecting between the two may be a matter

of practicality; however score tests may require numerical optimization techniques for in-

fimum calculations while (R)LRTs require a comparison of null and alternative models.

Verbeke and Molenberghs (2003) note that practicing statisticians have accessible software

to fit and compare a variety of models containing several variance components which may

allow (R)LRTs to be more widely employed. Scheipl et al. (2008) demonstrate (R)LRTs

outperforming Wald-type tests in situations of several variance components. We therefore

solely focus on (R)LRTs herein.

The (R)LRTs for testing functional predictors in models with multiple functional pre-

dictors can justify models with multivariable effects (averaged functional effects) and func-

tional effects, an important parsimony given the complexity of functional datasets. In a

similar vein of dimension reduction, but not as extreme, Ferraty et al. (2010) suggest a way

of reducing the very high dimension of a functional predictor to a low number of dimensions

chosen so as to give the best predictive performance. In James et al. (2009), the authors

impose a shrinkage penalty which results in coefficient function estimates containing re-

gions equal to zero. A point-impact model for scalar-on-function regression in which one

(or a few) unknown locations in the function domain affect the outcome has been proposed

for binary outcomes (Lindquist and McKeague, 2009).

We develop approaches to the functional linear model for the problem of hypothesis

testing in Section 2. We briefly overview 0-variance component (R)LRT testing method-
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ologies in Section 3. Sections 4 through 6 contain a simulation study, data application and

concluding remarks, respectively.

2 Techniques for Scalar-on-Function Regression

In this section we present two unique approaches to estimation in the FLM given in equa-

tion (1). The first is based on the widely-used FPCR approach, and the second on the

more recent PFR method. Both approaches are presented to facilitate testing under the

null hypothesis of a constant coefficient function, although other parametric forms for the

coefficient under the null are easily considered.

2.1 FPCR

Functional principal components regression (FPCR) uses a low-dimensional principal com-

ponent basis to express both the predictors and the coefficient function. Here we modify

this approach to separate a constant and a functional effect.

First, an FPC decomposition is estimated from the observed curves. Briefly, define

the covariance operator ΣW (s, s′) = Cov[Wi(s),Wi(s
′)] and let

∑∞
k=1 λkψk(s)ψk(s

′) be the

spectral decomposition of ΣW (s, s′). Here ψ(s) = {ψk(s) : k ∈ Z+} are orthonormal eigen-

functions and λ1 ≥ λ2 ≥ . . . are the corresponding non-increasing eigenvalues. In practice,

functions are observed on a dense (or sparse at the subject level) grid and possibly with

measurement error. To account for this, we estimate ΣW (s, s′) using a method-of-moments

approach and smooth the off-diagonal elements of this estimated covariance matrix to re-

move the effect of measurement error (Staniswalis and Lee, 1998; Yao et al., 2003). A trun-

cated Karhunen-Loève approximation for Wi(s) is Wi(s) = µ(s) +
∑Kw

l=1 cikψk(s), where

Kw is the truncation lag, the cik =
∫ 1

0
{Wi(s)− µ(s)}ψk(s)ds are uncorrelated random

variables with mean 0 and variance λk, and µ(s) = E[W (s)]. The scores ci are estimated

either through numeric integration or as random effects in a mixed model (Xiao et al.,

2013; Crainiceanu et al., 2009; Di et al., 2009; Yao et al., 2005). The choice of Kw can be

guided by the proportion of variability explained by each component or the leveling of the

loglikelihood for increasing Kw (James et al., 2000).
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We express the coefficient function using the basis φ(s) = {φ1(s), . . . , φKg(s)}; that is,

we let

γ(s) = φ(s)γ =

Kg∑
k=1

γkφk(s)

where γ = {γ1, . . . , γKg}T . In a departure from standard functional principal components

regression, we include curve means W̄i as scalar covariates and expand centered curves using

[Wi(s) − W̄i] =
∑Kw

l=1 c
∗
ikψk(s) where c∗ik =

∫ 1

0

{
Wi(s)− W̄i

}
ψk(s)ds. This formulation,

suggested by a reviewer, allows the separation of the constant and functional contributions

using ∫ 1

0

Wi(s)γ(s)ds = W̄iγ0 +

∫ 1

0

c∗
′

i ψ
T (s)φ(s)γds = W̄iγ0 + c∗

′

i γ.

Doing so facilitates testing for constancy by modeling deviations from a constant coef-

ficient function using the parameter vector γ.

Next we pose the FLM as a standard linear model. Let C be the row-stacking of c∗
′
i ,

X = [1 X C] be the matrix consisting of non-functional covariates (including the curve-

specific means W̄i) and the matrix C, and βT = [α, β, γ0,γ] be the vector of coefficients.

The FLM can be written

E[Y ] = Xβ +

∫ 1

0

W (s)γ(s)ds

= Xβ

and the parameters can be estimated using standard least squares. We are particularly

interested in the coefficients {γ1, . . . , γKg} which model deviations from a constant function.

Note the parameter Kg acts as a tuning parameter to control smoothness in γ(s), and is

typically chosen to be relatively small. The choice can be quite influential and is probably

best guided by a cross-validated approach (James et al., 2000; Ruppert, 2002).

This formulation contrasts with the standard FPCR in in the separation of constant

and functional effects for observed curves Wi(s). Doing so allows for testing the constancy

of the functional coefficient as in (2): one must only perform a test of the hypothesis

γ1 = γ2 = . . . = γKg = 0 using a standard likelihood ratio test. Additionally, one can test

for inclusion of the functional predictor (with constant coefficient or varying) by testing

γ0 = γ1 = γ2 = . . . = γKg = 0, which is again a standard LRT. Briefly, to test including W2
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in the presence of W1, as in test (3), each would be decomposed separately with possibly

distinct K ′g and γ2(s) = γ20 = γ21 = γ22 = . . . = γ2K′
g

= 0 would be tested in a standard

LRT. Optimally selecting Kw and Kg for FPCR is an open problem in functional data

analysis. The next method, PFR, is much less sensitive to these choices as one can set each

moderately large.

2.2 PFR

Alternatively to FPCR, PFR (Goldsmith et al., 2011) uses a large number of FPC basis

functions to expand the predictors and a flexible spline basis for the coefficient function.

Smoothness in the coefficient function is imposed using a mixed model construction. The

PFR method allows for a range of basis function and penalty specifications, and here we

construct a basis that reduces to a constant function under certain conditions.

As above, the functional predictor Wi(s) is expressed (and estimated) using principal

components decomposition with basis functions ψ(s) and scores ci, so that Wi(s) = µ(s) +∑Kw

k=1 cikψk(s). Next, the functional coefficient γ(s) is expressed in terms of a flexible spline

basis φ(s) = {φ0(s), φ1(s), . . . , φKg(s)}. Here we take φ(s) to be a B-spline basis in which

φ0(s) = 1 and {φ1(s), . . . , φKg(s)} model deviations from a constant. Thus

γ(s) = φ(s)g = γ0 +

Kg∑
k=1

gkφk(s)

where g = {γ0, g1, . . . , gKg}T . Smoothness is induced via a mixed-effects model treating

{gk}Kg

k=1 as random effects shared across individuals (in keeping with standard notation, we

use gk here in place of γk as in §2.1 to emphasize the distinction between random and fixed

effects). We use a modified first order random walk prior on the vector {gk}Kg

k=1 (Carter and

Kohn, 1994; Hastie and Tibshirani, 2000; Fahrmeir and Lang, 2001a,b; Lang and Brezger,

2004; Goldsmith et al., 2011). That is, we assume gl ∼ N
[
gl−1, σ

2
g

]
for 2 ≤ l ≤ Kg and

let g1 ∼ N
[
0, σ2

g

]
. Using these expressions for the predictor and coefficient functions, the

functional contribution for subject i is∫ 1

0

Wi(s)γ(s)ds = a+

∫ 1

0

c′iψ
T (s)φ(s)gds = a+ c′iMg
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where the (m,n)th element of M is
∫ 1

0
ψm(s)φn(s)ds and a =

∫ 1

0
µ(s)γ(s)ds which is incor-

porated into the overall intercept α.

We pose the FLM as a standard linear mixed effects model. Let C be the row-stacking

of c′i, X = [1 X (CM)[,1]] be the matrix consisting of non-functional covariates and the

first column of CM , Z = [(CM)[,2:Kg ]] be the matrix consisting of the remaining columns

of CM , βT = [α, β, γ0] be the fixed effects vector and uT = {gk}Kg

k=1 the random effects

vector. The FLM can be written

E[Y |X,u] = Xβ +

∫ 1

0

W (s)γ(s)ds

= Xβ +Zu

u ∼ N
[

0 , σ2
gD

]
where D is the penalty matrix induced by the random walk prior distribution on the

B-spline basis coefficients. Using this framework, extensions to regression with multiple

functional predictors and to longitudinal functional regression are direct, in that one can

appropriately augment the fixed and random effect design matrices according to the struc-

ture desired (Goldsmith et al., 2012). As discussed in Goldsmith et al. (2011) and Ruppert

(2002), the choice of Kw is less important in the PFR context than in the FPCR frame-

work due to smoothness in γ(s) being explicitly induced. Choosing Kw sufficiently large to

capture variability in the predictors and coefficient function is the only concern. Choosing

Kw sufficiently large would encompass all the relevant projections of XTX which include

those of XTY , whose relevant projections via partial least squares have been noted (Preda

et al., 2007; Preda and Saporta, 2005).

Having the functional coefficient modeled in a LMM with one fixed effect and many

random effects can be viewed as a problem in semiparametric regression (Ruppert et al.,

2003), for which exact likelihood ratio tests (LRT) and restricted likelihood ratio tests

(RLRT) have been developed (Crainiceanu et al., 2005). The LRT and RLRT centralize

on the issue of testing for 0-variance components. Interpretatively, a 0-variance component

(σ2
g = 0) sets all random effects {gk}Kg

k=1 identically to 0 and constrains the coefficient

function to be a constant, as in test (2). Since only variance components are involved

in testing, this may be tested as a LRT or RLRT, with RLRT being preferred. Similarly

σ2
g = 0 and γ0 = 0 restricts the coefficient function to be zero, motivating a test for inclusion
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of the predictor as in test (3) via a LRT due to a fixed effect being specified in the test.

Inferentially, the p-values associated with these tests can be obtained from the nonstan-

dard LRT and RLRT distributions of Crainiceanu and Ruppert (2004) and Greven et al.

(2008). The tests are deemed nonstandard because the null value of a tested parameter

is on the boundary of the parameter space and because the outcome cannot be split into

independent subvectors. Previous treatments by Self and Liang (1987) and Stram and

Lee (1994) each require some level of independence of the outcome. In the setting of lin-

ear mixed models with random effects representing smoothing terms, the assumption of

independence under the alternative is violated, resulting in a conservative albeit compu-

tationally straightforward test. Details of the 0-variance testing procedure for use in the

context of PFR are given in Section 3.

3 0-variance component testing methodologies

Here we review the testing procedure for 0-variance components in the LMM framework,

emphasizing the applicability of this approach for testing in the PFR context. We use

established software and borrow theory for penalized-spline additive models, and use tests

based on the restricted likelihood ratio test (RLRT) and likelihood ratio test (LRT).

3.1 Restricted likelihood ratio test

The restricted likelihood ratio test statistic

RLRT = 2 sup
θ∈HA

REL(θ)− 2 sup
θ∈H0

REL(θ)

is suitable for testing any hypothesis that involves solely variance components, where

REL(θ) denotes the restricted log-likelihood of the parameter vector θ. In particular, the

RLRT is relevant for testing the constancy of a coefficient function through the variance

component σ2
g .

For a LMM with one random effect variance component and fixed effects design matrix

X of dimension n× p, a spectral representation of the exact finite sample null distribution
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exists for n total observations (Crainiceanu and Ruppert, 2004):

RLRTn
d
= sup

λ≥0

[
(n− p− 1) log

{
1 +

Nn(λ)

Dn(λ)

}
−

K∑
s=1

log(1 + λµs,n)

]
,

where
d
= denotes equality in distribution, with the numerator and denominator terms

Nn(λ) =
K∑
s=1

λµs,n
1 + λµs,n

, Dn(λ) =
K∑
s=1

w2
s

1 + λµs,n
+

n−p−1∑
s=K+1

w2
s .

The quantities ws, (s = 1, . . . , n− p− 1) and µs, (s = 1, . . . , K) are independent standard

normal random variables and µs,n are the K eigenvalues of the K × K matrix Z ′(In −

X(X ′X)−1X ′)Z. For models with more than one random effect, a pseudo-likelihood

approach of Gong and Samaniego (1981) as detailed in Greven et al. (2008) can and will be

taken. Interchangeably for the single and multiple random effects models, the test based

on critical values from the simulated distribution will be referred to as RLRTCR herein

and will be the only test considered in the paper for PFR. Scheipl et al. (2008) found

RLRTCR comparable to bootstrap-based competitors with regard to power and size-levels

while providing substantial computational time reduction from hours to seconds.

3.2 Likelihood ratio test

Consider the likelihood ratio test statistic

LRT = 2 sup
θ∈HA

L(θ)− 2 sup
θ∈H0

L(θ)

for testing any hypothesis that involves variance components and fixed effect coefficients,

where L(θ) denotes the log-likelihood of the parameter vector θ. Some hypothesis tests will

affect the parameterization of the mean in addition to a 0-variance component. In such

instances, the LRT is needed.

For a LMM with one random effect variance component, a spectral representation of

the exact finite sample null distribution exists (Crainiceanu and Ruppert, 2004):

LRTn
d
= sup

λ≥0

[
n log

{
1 +

Nn(λ)

Dn(λ)

}
−

K∑
s=1

log(1 + λξs,n)

]
+ n

(
1 +

∑q
s=1 µ

2
s∑n−p−1

s=1 w2
s

)
.
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The quantities ws, µs, µs,n, Nn(λ), and Dn(λ), are as previously defined and ξs,n are the K

eigenvalues of the K ×K matrix Z ′Z. Scalar q indexing
∑q

s=1 µ
2
s is the number of fixed

effects being tested; if 0 the RLRT is preferred.

For models with more than one random effect, a pseudo-likelihood approach is taken

as described for the RLRT . Interchangeably for the single and multiple random effects

models, the test based on critical values from the simulated distribution will be referred to

as LRTCR herein.

4 Simulation

In this section we explore the properties of the inferential procedures developed in Sections

2 and 3 paper. We focus on the test for functional structure as presented in equation (2).

4.1 Testing in the Standard FLM

Our simulations are motivated by the neuroimaging application considered in Section

5. Functional predictors are generated using the observed principal component basis

functions ψO(s), score variances λO, mean function µO(s), and measurement error vari-

ance σ2,O obtained from a FPC decomposition of the observed curves WO
i (s) for sub-

jects in the study. To construct simulated predictors W S
i (s) with measurement error,

ε(s), we generate subject-specific PC loadings using c2i ∼ N [0, diag(λ)] and let W S
i =

µO(s) +
∑15

k=1 c
S
ikψ

O
k (s) + ε(s), 1 ≤ i ≤ I where ε(s) is iid N

[
0, σ2,O

]
for each s.

Simulated outcomes Y S
i are given by Y S

i = α +
∫ 1

0
W S
i (s)γ(S)(s) + εi where α = 2 and

ε ∼ N [0, 1]. The coefficient function γS(s) in simulations is based on the estimate γO(s)

from the real data analysis: γS = γO(s) + r(γO(s)− γO(s)) where r is a scaling factor that

we vary. Constructed in this way, γS(s) is a combination of the constant and deviation from

constant observed in the real data coefficient function. Figure 2 illustrates the simulation

design by plotting the observed curves, a single generated dataset, and the γS(s) that result

from several choices of the scaling factor r.

Using the procedure above, ten thousand data sets are generated for each of the following

parameter combinations:
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Figure 2: The left panel displays the observed functional predictors upon which simulated

data is based. The middle panel shows one simulated dataset with I = 100. The right

panel shows four coefficient functions used in simulations, with scaling factor ranging from

r = 0 (null scenario) to r = .1.

1. Sample sizes (a) I = 100; (b) I = 250; (c) I = 500;

2. Scaling factors (b) r = 0; (b) r = 0.05; (c) r = 0.10; (d) r = 0.25.

This gives a total of 12 possible simulation designs. For each simulated data set under each

design, the FLM is fitted via PFR with Kg = Kw = 30 and no scalar covariates. For the

FPCR approach in Section 2 of the main paper, the tuning parameter Kg is either fixed

at Kg = 2 or chosen as the minimum number of PCs needed to explain at least 90% of

variability in simulated functional predictors. We test the null hypothesis of a constant

coefficient function in the PFR setting using the procedures developed in Section 3 of the

main paper and in the FPCR setting using the standard LRT. Note that the null hypothesis

is true for simulations in which r = 0.

Table 1 reports the probability of rejecting the null hypothesis at the .05 and .01 levels

under each of the three testing scenarios, labeled as “FPCR2” for the FPCR approach with

Kg = 2, “FPCRpve” for the FPCR approach with Kg chosen using the percent variance

explained, and “PFR” for the penalized approach. Also included in Table 1 is a comparison

of the average mean squared error (AMSE), which is the sum of each simulation’s integrated

MSE =
∫ 1

0

(
γ̂S(s)− γS(s)

)2
ds divided by the number of simulations (10,000) . To compute
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the MSE, γ̂S(s) is the estimate under the null model if p > .05 and is the estimate under

the alternative model otherwise.

Reject at .05 Reject at .01 AMSE

FPCR2 FPCRpve PFR FPCR2 FPCRpve PFR FPCR2 FPCRpve PFR

I = 100

r = 0.00 0.059 0.066 0.041 0.012 0.014 0.007 1.374 3.290 0.914

r = 0.05 0.132 0.119 0.078 0.039 0.032 0.018 3.162 5.868 2.458

r = 0.10 0.318 0.274 0.207 0.138 0.112 0.078 6.922 11.964 6.341

r = 0.25 0.931 0.939 0.911 0.812 0.822 0.787 19.586 26.155 15.158

I = 250

r = 0.00 0.062 0.058 0.043 0.014 0.014 0.008 0.516 1.253 0.323

r = 0.05 0.242 0.198 0.150 0.095 0.068 0.052 1.967 3.699 1.650

r = 0.10 0.666 0.602 0.536 0.426 0.361 0.318 4.443 8.018 4.255

r = 0.25 0.999 1.000 1.000 0.999 1.000 1.000 15.763 14.162 7.292

I = 500

r = 0.00 0.073 0.066 0.048 0.017 0.015 0.010 0.294 0.770 0.171

r = 0.05 0.446 0.370 0.297 0.230 0.172 0.134 1.551 3.111 1.369

r = 0.10 0.929 0.914 0.883 0.812 0.773 0.740 3.218 5.137 2.521

r = 0.25 1.000 1.000 1.000 1.000 1.000 1.000 14.834 9.756 4.611

Table 1: Average rejection probability at the .05 and .01 thresholds for the null hypothesis

of a constant coefficient function. Tests are performed using the FPCR approach with

Kg = 2 (“FPCR2”), the FPCR approach with Kg chosen as the smallest value needed to

explain 90% of observed variability (“FPCRpve”), and the PFR method (“PFR”). 100×

AMSE for the coefficient function is also provided.

Several key points are apparent in Table 1. First, the tests we propose have the appro-

priate size under the null hypothesis, although we note that the PFR is slightly conservative

for smaller samples and the FPCR approaches are anti-conservative for all sample sizes.

Second, power to detect a true alternative hypothesis increases both as sample size in-

creases and as the size of the effect increases. The FPCR approaches have power that is

greater than or equal to the PFR approach in all circumstances; the non-inferior power

is likely related to the relative simplicity of the model and to the anti-conservatism under

the null. Third, the PFR method uniformly outperforms the FPCR methods in terms of

AMSE, often substantially. The relative performance of the FPCR2 and FPCRpve changes

as r increases. For low values of r the extra PCs used in the FPCRpve method lead to

overfitting, while for larger values of r these become useful basis functions for expanding
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the coefficient. Table 2 shows the size-corrected power for the simulation, for which PFR

uniformly bests FPCRpve at size 0.01. Finally, although not shown we note that the com-

putational burden of the three approaches is similar (For 100, 250, and 500 subjects, 1 run

on average takes 6, 8, and 10 seconds, respectively). The most computationally expensive

step is the estimation of a FPC decomposition, which is common to all methods, and the

model fitting is done using efficient implementations.

Reject at .05 Reject at .01

FPCR2 FPCRpve PFR FPCR2 FPCRpve PFR

I = 100

r = 0.00 0.050 0.050 0.050 0.010 0.010 0.010

r = 0.05 0.118 0.093 0.093 0.033 0.023 0.025

r = 0.10 0.294 0.230 0.236 0.125 0.086 0.100

r = 0.25 0.922 0.919 0.922 0.796 0.785 0.820

I = 250

r = 0.00 0.050 0.050 0.050 0.010 0.010 0.010

r = 0.05 0.217 0.179 0.166 0.076 0.050 0.059

r = 0.10 0.629 0.574 0.558 0.381 0.309 0.338

r = 0.25 0.999 1.000 1.000 0.998 1.000 1.000

I = 500

r = 0.00 0.050 0.050 0.050 0.010 0.010 0.010

r = 0.05 0.382 0.320 0.302 0.171 0.129 0.139

r = 0.10 0.903 0.892 0.884 0.753 0.721 0.746

r = 0.25 1.000 1.000 1.000 1.000 1.000 1.000

Table 2: Size-adjusted average rejection probability at the .05 and .01 thresholds for the

null hypothesis of a constant coefficient function. Tests are performed using the FPCR

approach with Kg = 2 (“FPCR2”), the FPCR approach with Kg chosen as the smallest

value needed to 90% of observed variability (“FPCRpve”), and the PFR method (“PFR”).

100× average MSE for the coefficient function is also provided. Cutoffs are chosen to ensure

nominal coverage under the null hypothesis.

5 Application

We turn our attention to the study of intracranial white matter microstructure that is

the motivation for our work. Of interest is whether differences in cognitive function can

be explained by changes in white matter observed longitudinally in a cohort of multiple
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sclerosis (MS) patients. MS is an immune-mediated inflammatory disease that is associated

with the demyelination of white matter fibers. Because the myelin sheath surrounds and

protects the axons which rapidly propagate electrical signals in the brain, damage to this

insulation can result in severe cognitive and motor disability. To quantify white matter

properties, diffusion tensor imaging is used to produce detailed images of white matter

tissue by tracing the diffusion of water in the brain (Basser et al., 1994, 2000; LeBihan

et al., 2001; Mori and Barker, 1999). From these images, continuous summaries of major

white matter structures called tract profiles can be obtained.

Our data contain 100 subjects with between 2 and 8 visits each, for a total of 340

visits. Corpus callosum (CCA) and right corticospinal tract (RCST) profiles and tests of

cognitive ability were obtained at each visit, longitudinally. The CCA and RCST profiles

were registered to a common, regularly spaced, dense grid of 93 and 55 points respectively.

In this analysis we focus on the Paced Auditory Serial Addition Test (PASAT) as a measure

of cognitive performance (Gronwall, 1977). Our goal is to understand the relationship

between this score and tract profiles of the CCA and RCST. The CCA is a major white

matter structure connecting the left and right hemispheres of the brain, and damage to

this structure has previously been linked to a decline in cognitive performance among MS

patients (Ozturk et al., 2010). The right and left corticospinal tracts connect the motor

cortex to the brain stem. Figure 1 illustrates the position of the corpus callosum and

corticospinal tracts in the brain. We also show the tract profiles and scalar outcomes

observed to illustrate the longitudinal functional data structure we address. Note this data

set has been considered previously in (Goldsmith et al., 2012).

We conduct three tests to evaluate the strength of association between the spatially

dynamic white matter integrity of the corpus callosum (Wij1) and right corticospinal tract

(Wij2) with the PASAT score. All models considered include a binary variable indicating

each subject’s first visit to adjust for the learning effect common in cognitive testing. We

also include subject-specific random intercepts to account for repeated observations within

subjects (additional tests indicate that the random intercepts are a crucial component of

any model considered). All PFR models used (Kw = 10, Kg = 50) and (Kw = 30, Kg = 30)

and all FPCR models Kw = 30 and Kg = 10.
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As discussed in the Introduction, two scientific questions motivated the statistical de-

velopment: 1) Is the effect of a tract indeed functional, varying over location or is the

effect constant over location as a whole-tract average? and 2) Does accounting for a motor

functioning tract in the presence of a cognitive tract add significantly to the model fit,

that is to say is some part of PASAT’s variance not just cognitive but related to motor

functioning damage? Scientific question 1) is addressed by Test 1 and Test 2 (hypotheses

(4) and (5)) below for each tract; scientific question 2) is addressed by Test 3 (hypothesis

(6)).

• Test 1: Does the functional structure of the corpus callosum significantly improve

beyond a mean-only model? To answer this we test

H0 : E[Yij] = α + bi +X iβ +W ij1βW (4)

HA : E[Yij] = α + bi +X iβ +

∫ 1

0

Wij1(s)γ1(s)ds.

With RLRTCR = 3.58 and pCR = 0.01 for (Kw = 10, Kg = 50), the test rejects H0 in

favor of HA, indicating that the functional structure modeled for the corpus callosum

within the analysis can be justified. Results for the (Kw = 30, Kg = 30) analysis

agree: RLRTCR = 4.12 and pCR = 0.02.

• Test 2: Does the functional structure of the right corticospinal tract significantly

improve beyond a mean-only model? To answer this we test

H0 : E[Yij] = α + bi +X iβ +W ij2βW (5)

HA : E[Yij] = α + bi +X iβ +

∫ 1

0

Wij2(s)γ1(s)ds.

With RLRTCR = 3.00 and pCR = 0.02 for (Kw = 10, Kg = 50), the test rejects H0

in favor of HA, indicating that the functional structure modeled for the right corti-

cospinal tract within the analysis can be justified. Results for the (Kw = 30, Kg = 30)

analysis agree: RLRTCR = 2.74 and pCR = 0.02.

• Test 3: Does modeling RCST (Wij2) add significantly to a model fit with CCA (Wij1)
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alone? We test

H0 : E[Yij] = α + bi +X iβ +

∫ 1

0

Wij1(s)γ1(s)ds (6)

HA : E[Yij] = α + bi +X iβ +

∫ 1

0

Wij1(s)γ1(s)ds+

∫ 1

0

Wij2(s)γ2(s)ds.

With LRTCR = 0.12 and pCR = 0.78 for (Kw = 10, Kg = 50), the test fails to reject

H0 in favor of HA, indicating that omitting RCST from the analysis can be justified.

Results for the (Kw = 30, Kg = 30) analysis agree: RLRTCR = 0.00 and pCR = 1.00.

Given the inferential conclusions matched for all PFR and FPCR models and based on

our simulated results of PFR producing higher AMSE, we discuss solely the PFR Kw =

10, Kg = 50) results (for thoroughness, FPCR results: Test 1 LRTFPCR = 2.45, pFPCR =

0.01; Test 2 LRTFPCR = 3.48, pFPCR < 0.01; Test 3 LRTFPCR = 0.73, pFPCR = 0.70).

Figure 3 shows the resulting coefficient functions from fitting the alternative hypothe-

ses in (4)-(6). In both univariate models (models with a single functional predictor) the

coefficient functions are dynamic over the domain, suggesting that qualitative assessments

might conclude that either predictor’s functional structure contributes to the model. Tests

(4) and (5) confirm this presupposition. However, the results of the multivariate model

show a coefficient function for the right corticospinal tract that is constant and near

zero, while the coefficient function for the corpus callosum is largely unchanged from

the univariate analysis. These multivariate visual results agree with the result of test

(6). PFR sensitivity analyses with pairwise combinations of Kw ∈ {5, 6, 7, 8, 9, 10, 11} and

Kg ∈ {Kw + 1, Kw + 5, 20, 40, 60} show no change in inference for any of the tests at

the 0.05 confidence level, with p-values ranging from (0.001, 0.04), (0.01, .04), (0.28, 1.0)

for tests (4), (5), and (6), respectively. Furthermore, the results stabilize above values

Kw = 9, Kg = 20 for PFR.

The claim of inference being robust to values of Kw and Kg assumes an alpha-level

of 0.05 for each of the tests. If the alpha level was lower, inference might be sensitive to

Kw and Kg. Also, there is an issue of test (6) being conditional on test (4), which could

motivate a Bonferroni adjustment making the alpha-level 0.025 for each test, also making

the outlined tests sensitive to Kw and Kg. Again, the optimal selection of Kw and Kg is
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a difficult and open problem. As a matter of practice to protect inferential integrity, the

authors advocate selecting Kw so that 99% of the variance is explained and Kg = 50, if

computationally feasible. Since p-values tend to stabilize for increasing Kw and Kg, setting

Kw and Kg in such a fashion will ensure they are in the upper range of most contexts and

correspondingly p-values being more reflective of the data than of the modeling choice.

Figure 3: The top panels of this figure show the coefficient function estimates that result

from the univariate alternative models in (4) and (5) on the left and right respectively.

The bottom panels show the coefficient function estimates that result from the multivariate

alternative model in (6). This figure appears in color in the electronic version of this article.

For both univariate tests including functional information is supported and deems the

spatial information of a brain tract as important in the relationship between and cognitive

performance and demyelination of the tracts in isolation. Our statistical results are also

consistent with the scientific information regarding the anatomical structures of interest. In

particular we recall that the corticospinal tracts are primarily transmitters of motor signals

that should not directly affect cognitive performance. On the other hand, the corpus callo-

sum connects the hemispheres of the brain and may be relevant for the PASAT measure of

cognitive function, which involves auditory processing, short term memory, and arithmetic

computations. Plausibly, the corticospinal tract could be related to cognitive function as
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a measure of overall disease burden and lesion load, as evinced by (5). Additionally, the

corticospinal tract is closely correlated with the corpus callosum in the region of interest

indicated in the univariate analysis (positions 40-50). The results of these hypothesis tests

support a case for functional confounding of the relationship between the PASAT score and

the right corticospinal tract by the corpus callosum.

6 Concluding remarks

Often, the intuitive assumption is that the functional structure of predictors contains useful

information for exploring associations with an outcome of interest. However, the case may

often be that the relevant quantities are captured by much simpler forms. In this paper

we have developed a framework for rigorous hypothesis testing framework that compares

the null of a constant coefficient function to a more flexible, spatially varying coefficient.

Under the null hypothesis, only the mean of functional predictors is retained as a covariate

in a standard linear model.

The application results of Section 5 emphasize the trouble intuition can cause and

the usefulness of explicit hypothesis tests. For both univariate tests (4) and (5) a constant

function can comfortably fit between the 95% pointwise confidence bounds of the estimated

coefficient function, but in both cases the test of a constant coefficient function is rejected

at the .05 level by a hypothesis test for constancy. Moreover, although the corpus callosum

is a significant predictor of the PASAT score, the pointwise confidence interval for the

coefficient function contains zero over the entire domain. In situations like these heuristic

arguments can fail badly and proper inference requires the use of hypothesis testing.

Our approaches to this problem mirror the development of estimation procedures for

the FLM. First, we consider a low-dimensional approach based on the use of principal

component loadings as predictors in a linear model. This method is a modification of the

popular FPCR technique that has a relatively long history in the FDA literature. Next

we implement an estimation procedure that uses a flexible spline basis for the coefficient

function and induces smoothness via penalization in a mixed model framework. Testing in

the first case is relatively straightforward and is based on a standard likelihood ratio test,

while in the second case we develop nonstandard (restricted) likelihood ratio tests for zero
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variance components. Simulations indicate that the tests achieve the nominal size under

the null and have reasonable power to detect true alternative hypotheses.

As is always the case when comparing low-dimensional and penalized approaches to

functional regression, there are certain tradeoffs in the context of hypothesis testing. The

FPCR approach is more straightforward to implement for both estimation and testing, and

in simulation exercises appears to have more power to detect a true alternative (although

it is somewhat anti-conservative under the null). The penalized approach allows for more

flexible estimation of the coefficient function, but requires more sophisticated estimation

and testing techniques. Deciding which approach is most appropriate is often context-

specific, although we generally recommend the more flexible penalized approach in the

absence of compelling justifications for the low-dimensional method.

Several directions for future work are apparent. The use of the mixed model framework

to induce penalization is common in the FDA literature, ranging from smoothing esti-

mates of individual curves to penalization in function-on-function and function-on-scalar

regression models. Our work indicates that (restricted) likelihood ratio tests are well-

suited to testing in functional settings and could be adapted to the contexts above. In

this manuscript we have focused on testing for continuous outcome regression models, but

considering functional generalized linear models is important as well.
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