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Abstract

This work is concerned with understanding common population-level effects of stroke on motor control

while accounting for possible subject-level idiosyncratic effects. Upper extremity motor control for each

subject is assessed through repeated planar reaching motions from a central point to eight pre-specified

targets arranged on a circle. We observe the kinematic data for hand position as a bivariate function

of time for each reach. Our goal is to estimate the bivariate function-on-scalar regression with subject-

level random functional effects while accounting for potential correlation in residual curves; covariates

of interest are severity of motor impairment and target number. We express fixed effects and random

effects using penalized splines, and allow for residual correlation using a Wishart prior distribution.

Parameters are jointly estimated in a Bayesian framework, and we implement a computationally efficient

approximation algorithm using variational Bayes. Simulations indicate that the proposed method yields

accurate estimation and inference, and application results suggest that the effect of stroke on motor

control has a systematic component observed across subjects.

Key Words: Penalized Splines, Bivariate Data, Bayesian Regression, Gibbs Sampler, Variational Bayes.

1 Introduction

Stroke is the leading cause of long-term disability in the United States, with an incidence of over 795,000

events each year (Go et al., 2013) – a rate that is expected to grow to over one million by 2025 (Broderick,

2004). Disability induced by stroke is manifested in many activities including motor control, speech, and
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cognitive performance. Between 30-66% of stroke patients have clinically apparent motor deficits involving

the upper extremity at 6 months (Kwakkel et al., 2003), but it remains unclear to what extent these

deficits are idiosyncratic (or subject-specific) rather than common across affected individuals. In this

paper we explore the relationship between a clinical measure of arm motor impairment, the Fugl-Meyer

Upper Extremity Motor Assessment (FM-UE, Fugl-Meyer et al. (1974)), and performance on a reaching

task designed to test a fundamental level of motor control (Kitago et al., 2013) in a population of patients

suffering from with persistent arm weakness following stroke. Elderly healthy controls are included as a

reference group. In the reaching task, observations at the subject level are repeated two-dimensional motion

trajectories parameterized by time. Our analytical approach for these mulitlevel bivariate functional data

is to jointly model main effects for motor impairment and target direction, subject-level random effects,

and residual correlation in a Bayesian function-on-scalar regression.

1.1 Two-dimensional Planar Reaching Data

We now describe the scientific setting and data structure in more detail. Our study population consists

of patients who had a first time ischemic or hemorhagic stroke six or more months in the past, and have

residual paresis of the affected arm (FM-UE less than the maximum score of 66). Exclusion criteria include

multiple stroke events, hemorrhagic stroke, traumatic brain injury, major non-stroke medical illness that

alters brain function, orthopedic or neurological condition that interferes with arm function, or inability to

give informed consent. Selected patients exhibit moderate to severe hemiparesis, or weakness and motor

control deficit, in the affected arm. Healthy controls with an age distribution similar to that in stroke

patients are included as a reference group.

As a measurement of upper extremity motor control, subjects make repeated center-out arm reaching

movements to 8 targets in the following experimental design. After subjects are seated to align the

shoulder, elbow, and hand in the horizontal plane, the trunk is comfortably secured and the wrist and

hand are immobilized with a splint. The forearm is supported on an air-sled system to reduce the effects

of friction and gravity, diminishing the impact of strength deficits on motions and isolating motor control.

Subjects make reaching movements from a central starting point to eight targets arranged equidistantly

on a circle of radius 8cm around the starting point. The center-out reaching movements required can be
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performed by all but the most severely impaired subjects. Before data acquisition, a short introductory

period familiarizes subjects with the experiment configuration. These data were collected as part of baseline

assessments for two longitudinal stroke intervention studies (Kitago et al., 2013; Huang et al., 2012) and

a study of cerebral blood flow after stroke (unpublished data), which were approved by the Columbia

University Medical Center Institutional Review Board.

Kinematic data is recorded for each motion made by each subject. That is, we observe theX and Y coor-

dinate of the hand position for as a function of time giving bivariate functional observations (PXij (t), P Yij (t))

for subjects i and motions j. Our dataset consists of 24 healthy controls, 25 mildly affected stroke patients

(FM-UE 44 and above), and 8 severely affected stroke patients (FM-UE <44); all participants make 22

reaching motions with both their dominant and nondominant hands to each of the eight targets, giving

352 motions for each subject and roughly 20,000 overall bivariate functional observations (note that due

to technical errors in recording, some motions are removed from the dataset). Although the data are

inherently functional in nature, existing analyses have primarily focused on scalar summaries of observed

trajectories including the deviation of endpoint from target, peak velocity, and curvature (Levin, 1996;

Lang et al., 2006; Coderre et al., 2010).

Figure 1 shows the observed data for one healthy control in the top row and one severely affected stroke

patient in the bottom row. In the left column are complete trajectories, illustrating the full path of each

reaching motion colored according to target. There are clear differences comparing the healthy control

and stroke patient, particularly in the average motion made to each target: for instance, for the target

at 0◦ the stroke patient exhibits both overextension and increased curvature with respect to the control

subject. The middle and right columns show the constituent functions PXij (t) and P Yij (t) that make up

the kinematic data for each trajectory – we will model these using a combination of population-level fixed

effects, subject-level random effects, and curve-level FPCA effects. The stroke patient has unilateral tissue

damage due to blockage of the right middle cerebral artery, which results in disrupted motor skill in the

dominant arm.

Our goal in this analysis is to explore the extent to which the effects of stroke are consistent across

subjects through a regression analysis using a combination of subject-level scalar covariates, such as a

categorical ranking or a continuous measure of impairment severity, as predictors of interest. Evidence for
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Figure 1: Observed data for two subjects; the top row shows the dominant hand of a healthy control,
and the bottom row shows the affected dominant hand of a severe stroke patient. The left column shows
observed kinematic data for all reaches observed in the dominant hand. The middle and right columns
show the X- and Y- position separately for all reaches.

systematic effects of stroke on motor control would indicate that the induced control abnormality is not

entirely subject specific, but rather that disrupting the motor cortex or its descending pathways leads to

predictable deficits in upper extremity motor control. The data structure necessitates correctly accounting

for subject-level effects through the inclusion of random functional intercepts, and accurate inference

depends on incorporating residual correlation. Throughout, our outcome is the bivariate kinematic function

for hand position over time.

1.2 Statistical Methods

We observe data [PXij (t), P Yij (t),wi] for subjects i = 1, . . . , I and visits j = 1, . . . Ji for a total number of

observations n =
∑

i Ji. In our application PXij (t), P Yij (t) are the X and Y position curves indexed by time
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t ∈ [0, 1] and wij is a length p vector of scalar covariates. We propose the model


PXij (t) = βX0 (t) +

∑p
k=1wi,kβ

X
k (t) + bXi (t) + εXij (t)

P Yij (t) = βY0 (t) +
∑p

k=1wi,kβ
Y
k (t) + bYi (t) + εYij(t)

(1)

where βXk (t), βYk (t) are fixed effects associated with scalar covariates, bXi (t), bYi (t) are subject-specific ran-

dom effects, and εXij (t), εYij(t) are potentially correlated residual curves. Penalized splines are used to

estimate fixed and random effects; although many options are possible, we will use a cubic B-splines basis

with a combined zeroth and second derivative penalty throughout. All parameters are modeled in Bayesian

framework that, in particular, allows the joint modeling of the mean structure (through fixed and random

effects) and residual correlation (through the errorl covariance matrix) in a single Gibbs sampler. Impor-

tantly, a variational Bayes algorithm provides a computationally efficient and accurate approximation to

the full sampler.

In practice, observations are not truly functional but are observed as structured discrete vectors. For

notational simplicity, we assume functional observations lie on a dense grid of length D common to all

subjects, although the methods described are suitable for different observation grids that can be sparse at

the subject or visit level. In our application, trajectories are observed at 120Hz but have been interpolated

so that D = 25 for all motions. Despite being observed as vectors, objects that are functional in nature

will be denoted as f(t) where appropriate to emphasize the structure underlying the data.

There is a large body of existing work for the analysis of functional outcome models. We broadly

consider two methodological categories, the first of which consists of approaches that seek to estimate

each curve in the dataset. Brumback and Rice (1998) posed a function-on-scalar regression in which

population-level coefficients and curve-level deviations are modeled using penalized splines; for computa-

tional convenience, intercepts and slopes for curve-level effects were treated as fixed effects. Guo (2002)

extended this approach by formulating curve-specific deviations as random effects. Due to the difficulty in

estimating all curves using penalized splines, these approaches can be computationally intensive for large

dataset. Functional principal component methods for cross sectional data (Yao et al., 2005), as well as

recent extensions for multilevel (Di et al., 2009), longitudinal (Greven et al., 2010), and spatially correlated
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data (Staicu et al., 2010), model curve-specific deviations from a population mean using low-dimensional

basis functions estimated from the empirical covariance matrix. These methods do not focus on the flexi-

ble estimation of the population mean surface; moreover in assessing uncertainty these methods implicitly

condition on estimated decomposition objects, which can lead to the understatement of total variability

(Goldsmith et al., 2013)

Alternatively, one can view individual curves as errors around the population- or subject-level mean

of interest. This approach is described in (Ramsay and Silverman, 2005, §13.4), in which fixed effects at

the population level are estimated using penalized splines but individual curves are not directly modeled.

Reiss and Huang (2010) builds on this approach by taking advantage of the inherent connection between

penalized splines and ridge regression to develop fast methods for leave-one-out cross validation to select

tuning parameters. Scheipl et al. (2013) propose a very flexible class of functional outcome models, allowing

cross sectional or longitudinal data as well as scalar or functional predictors and estimating effects in a

mixed model framework; a robust software implementation of this method is provided in the refund R

package (Crainiceanu et al., 2012). A drawback of these approaches is the assumption that error curves

consist only of measurement error despite clear correlation in the functional domain. One alternative,

proposed by Reiss and Huang (2010), is an iterative procedure to estimate the mean structure and then,

using this mean, the residual covariance matrix followed by a re-estimation of the mean using generalized

least squares. Doing so necessarily increases the computational burden and does not allow joint estimation

of the mean and covariance; additionally, coverage properties of this approach have not been presented.

Morris and Carroll (2006) develop a Bayesian wavelet-based estimation method that allows for correlated

errors, but the computation burden of the MCMC procedure is prohibitive for data exploration and model

building, especially for large datasets. Moreover, wavelet bases are not be suitable for many applications.

This manuscript presents several methodological advancements. We develop a Bayesian framework for

penalized spline function-on-scalar regression, allowing the joint modeling of population-level fixed effects,

subject-level random effects and residual covariance. Dramatic computational improvements compared to

the fully Bayesian analysis and, surprisingly, frequentist mixed model approaches are obtained through

a variational Bayes approximation that is fast and accurate. This algorithm enables model selection and

comparison, which for large datasets is infeasible with competing approaches. Novelly in function-on-scalar
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regression, we consider multilevel bivariate functional data as the outcome of interest. Finally, the size and

structure of the motivating dataset – which consists of nearly 20,000 trajectories, nested within subjects

and depending on target, impairment severity and affected hand as covariates – is unique in the functional

data analysis literature.

The remainder of the paper is organized as follows. We discuss the model formulation and the variational

Bayes approximation in Section 2. In Section 3 we conduct simulations designed to mimic the motivating

data. Section 4 presents the analysis of the complete dataset. We close with a discussion in Section 5. An

appendix presents the complete Gibbs sampler and variational Bayes algorithm. R implementations of all

proposed methods and complete simulation code are publicly available.

2 Methods

We begin by focusing on a simplification of model (1) for univariate functional data in order to develop the

requisite techniques for fixed effects, random effects, and residual covariance in a Bayesian setting. Once

these are established, we consider the bivariate model in Section 2.4.

2.1 Full Model

For now, assume data is [Yij(t),wi] for subjects i = 1, . . . , I and visits j = 1, . . . Ji, giving a total of

n =
∑

i Ji observations. Univariate functional outcomes Yij(t) are observed on a regular grid of length D

for all subjects and visits. We pose the outcome model

Yij = wiβ + zijb+ εij (2)

εij ∼ N [0,Σ] (3)

where Y ij is the 1×D observed functional outcome; wi and zij are fixed and random effect design vectors

of size 1× p and 1× I respectively; β and b are fixed and random effect coefficient matrices of size p×D

and I ×D, respectively; and ε is a 1×D matrix of residual curves distributed N [0,Σ], assumed iid across

subjects and visits.

We express the functional effects in the rows of β and b using a spline expansion. Let Θ denote
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a D × Kθ cubic B-spline evaluation matrix with Kθ basis functions. Further let BW and BZ denote

the matrices whose columns are basis coefficients for β and b respectively, so that β = [ΘBW ]T and

b = [ΘBZ ]T . Penalization is a commonly-used technique to avoid overfitting and induce smoothness in

functional effects. In a frequentist approach quadratic penalization is accomplished through the addition

of terms λWk
BT
Wk
PBWk

and λZB
T
Zi
PBZi for the columns of BW and BZ to the least squares criterion,

where P is a known penalty matrix and the {λWk
}pk=1 and λZ are tuning parameters that controls the

degree of smoothness. Distinct tuning parameters {λWk
}pk=1 are estimated for the columns of BW , while

a single tuning parameter λZ controls smoothness of subject random effects in the columns of Z. The

choice of penalty matrix P is discussed in Section 2.3.

The connection between penalized spline regression and mixed models is well known; see Ruppert

et al. (2003, Ch. 4.9) for a detailed treatment. Very briefly, assuming that BW1 ∼ N
[
0, σ2

W1
P−1

]
and

ε ∼ N
[
0, σ2

εID

]
, estimating model parameters in a mixed model as best linear unbiased predictors is

equivalent to penalized least squares with λW1 = σ2
ε

σ2
W1

; variance components are typically estimated using

restricted maximum likelihood. Frequentist mixed models and Bayesian approaches are closely related, and

it is natural to view penalized spline smoothing from a Bayesian perspective (Crainiceanu et al., 2005). To

maintain the connection to penalized spline regression, we use mean-zero Normal priors for the B-spline

regression coefficients in the columns of BW and BZ . Meanwhile, inverse-gamma priors are used for the

variance components
{
σ2
Wk

}p
k=1

, σ2
Z . Our model specification is completed using an Inverse Wishart prior

for the residual covariance matrix Σ.

For estimation, we cast model (2) in a hierarchical framework. Let Y be an n×D matrix of row-stacked

functional outcomes, Z be the random effects design matrix, W be the fixed effects matrix constructed by

row-stacking the wi, and ⊗ represent the Kronecker product operator. Our full model is

Y = ZBT
ZΘT + ε

ε ∼ N [0,Σ⊗ In] ; Σ ∼ IW [ν,Ψ]

BZi ∼ N
[
wiBW , σ

2
ZP

−1
]

for i = 1 . . . I;σ2
Z ∼ IG [aZ , bZ ]

BWk
∼ N

[
0, σ2

Wk
P−1

]
, σ2

Wk
∼ IG [aWk

, bWk
] for k = 1 . . . p. (4)
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Full conditionals for all model parameters are straightforward to obtain using vector notation and Kronecker

products. For matrix M and vector c, let vec (M) be the vector formed by concatenating the columns of M

and diag (c) be the matrix with elements of c on the main diagonal and zero elsewhere. Further let “rest”

include both the observed data and all parameters not currently under consideration. As an example of

the full conditional distributions resulting from model (4), it can be shown that

p [vec (BW ) |rest] ∝ N
[
µBW ,ΣBW

]

where

ΣBW =

(
1

σ2
Z

(W ⊗ IKt)T (II ⊗ P )(W ⊗ IKt) + diag

(
1

σ2
Wk

)
⊗ P

)−1

and

µBW = ΣBW

(
1

σ2
Z

(W ⊗ IKt)T (II ⊗ P )vec (BZ)

)
.

Additionally, we have that

p
[
σ2
Wk
|rest

]
∝ IG

[
aWk

+
Kt

2
, bWk

+BT
Wk
PBWk

]
.

Complete derivations of this and all other full conditional distributions are provided in Appendix A.

2.2 Variational Bayes

Variational Bayes methods are regularly used in the computer science literature, and to a more limited

extent in the statistics literature, to provide approximate solutions to intractable inference problems (Jor-

dan, 2004; Jordan et al., 1999; Titterington, 2004; Ormerod and Wand, 2012). These tools have also been

used somewhat rarely in functional data analysis (Goldsmith et al., 2011; McLean et al., 2013; van der

Linde, 2008). Here we review variational Bayes only as much as needed to develop an iterative algo-

rithm for approximate Bayesian inference in penalized function-on-scalar regression; for a more detailed

overview see Ormerod and Wand (2010) and Bishop (2006, Chapter 10). We emphasize that the variational

Bayes approach is not intended to supplant a more complete MCMC sampler, but rather is an appealing

computationally efficient approximation that is useful for model building and data exploration.

9



Let y and φ represent respectively the full data and parameter collection. The goal of variational

Bayes methods is to approximate the full posterior p(φ|y) using q(φ), where q is restricted to a class

of functions that are more tractable than the full posterior distribution. From the restricted class of

functions, we wish to choose the element q∗ that minimizes the Kullback-Leibler distance from p(φ|y).

Divergence between p(φ|y) and q(φ) is measured using Lq =
∫
q(φ) log p(y,φ)

q(φ) dφ, the q-specific lower

bound on the marginal log-likelihood log p(y); maximizing Lq across the class of candidate functions gives

the best possible approximation to the full posterior distribution. To make the approximation tractable,

the candidate functions q(φ) are products over a partition of φ, so that q(φ) =
∏L
l=1 ql(φl), and each ql is

a parametric density function. It can be shown that the optimal q∗l densities are given by

q∗l (φl) ∝ exp
[
Eφ−l log p(y, φ)

]
∝ exp

[
Eφ−l log p(φl|rest)

]

where, again, rest ≡ {y, φ1, . . . , φl−1, φl+1, . . . , φL} is the collection of all remaining parameters and the

observed data. In practice, one sets initial values for each of the φl and updates the respective optimal

densities iteratively, similarly to a Gibbs sampler, while monitoring the q-specific lower bound Lq for

convergence.

For the function-on-scalar regression model shown in Equation (4), we use the partitioning

q
(
BZ ,BW , σ

2
W1
, . . . , σ2

Wp
, σ2

Z ,Σ
)

= q(BZ)q(BW )

(
p∏

k=1

q(σ2
Wk

)

)
q(σ2

Z)q(Σ)

where the functions q are distinguished by their argument rather than by subscript l. Using this factoriza-

tion, it can be shown that the optimal density q∗(vec (BW )) for is N
[
µq(BW ),Σq(BW )

]
, where

Σq(BW ) =
(
µq(1/σ2

Z)(W ⊗ IKt)T (II ⊗ P )(W ⊗ IKt) + diag
(
µq(1/σ2

Wk
)

)
⊗ P

)−1

and

µq(BW ) = Σq(BW )

(
µq(1/σ2

Z)(W ⊗ IKt)T (II ⊗ P )vec
(
µq(BZ)

))
.

In the above, the notation µq(φ) and Σq(φ) indicate the mean and variance of the density q(φ). Thus,
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the optimal density q∗(vec (BW )) is Normal with mean and variance completely determined by the data

and the parameters of the remaining densities. Similar expressions are obtained for all model parameters.

Together, these forms suggest an iterative algorithm in which each density is updated in turn using the

parameters from the remaining densities; convergence of this algorithm is monitored through Lq, the q-

specific lower bound of the marginal log-likelihood.The iterative algorithm and the form for Lq are provided

in Appendix B.

2.3 Choice of penalty matrix, hyperparameters, and initial values

In both the Gibbs sampler presented in Section 2.1 and in density updates for the variational Bayes

algorithm described in 2.2, it is not necessary that the penalty matrix P be of full rank: although this

introduces improper priors for the functional effects, the posteriors are proper. However the lower bound

Lq, used to monitor convergence of the variational Bayes algorithm, contains a term of the form log(|P−1|),

thus requiring P to be full rank. For this reason, we propose to use P = αP0 + (1−α)P2, where P0 and P2

are the matrices corresponding to zeroth and second derivative penalties. The P2 penalty matrix enforces

smoothness in the estimated function, but is non-invertable. The P0 penalty matrix induces general

shrinkage and is full rank. Selecting 0 < α ≤ 1 balances smoothness and shrinkage, and results in a full

rank penalty matrix. Unreported simulations and data analyses indicate low sensitivity to the choice of α,

but we recommend a relatively small value (α = 0.1) in keeping with the tendency to enforce smoothness

rather than shrinkage.

We use the following procedure to choose hyperparameters and initial values. First, we estimate

BZ using ordinary least squares from the regression E [Y ] = ZBT
ZΘT to obtain BOLS

Z . Second, we

estimate BW using weighted least squares from the regression E
[(
BOLS
Z

)T ]
= WBT

W with weight

matrix P−1 to obtain BWLS
W . Initial values for BZ and BW are given by BOLS

Z and BWLS
W , respec-

tively. Our first regression, an ordinary least squares, assumes the residual covariance is Σ = σ2
ε ID.

We estimate σ2
ε in this framework, and use ν =

∑
i Ji, Ψ =

∑
i Jiσ

2
ε ID as hyperparameters in the

prior for Σ. Effectively, our prior assumes uncorrelated homoscedastic errors and the posterior bal-

ances this with the observed residual correlation. Because the observed residual correlation matrix is

low rank in our application, adding a diagonal matrix is needed for a full-rank posterior. Similarly, we
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choose az = I∗Kt
2 , bz = tr

[((
BOLS
Z

)T −W (
BWLS
W

)T)T
P
((
BOLS
Z

)T −W (
BWLS
W

)T)]
, aWk

= Kt
2 , and

bWk
=
(
BWLS
Wk

)T
P
(
BWLS
Wk

)
according to the assumed form for the second regression and the prior for

BW . These hyperparameters establish maximum levels of penalization and prevent oversmoothing.

2.4 Bivariate data

In the preceding we have focused on a univariate outcome for clarity of exposition while introducing

methods. In this section we describe the bivariate outcome model. Only straightforward modifications to

the Gibbs sampler and variational Bayes updates given in Sections 2.1 and 2.2, respectively, are needed

for this setting.

Let Y = [Y 1Y 2] be the concatenation of two outcome matrices Y 1 and Y 2 (in our example, we

concatenate the X and Y position curves so that Y = [PXP Y ]). The full model for bivariate outcome

data uses Kronecker products of the B-spline basis to expand Y 1 and Y 2, induces smoothness for fixed

and random effects in Y 1 and Y 2 through separate variance components, and allows residual correlation

within and across Y 1 and Y 2:

Y = ZBT
Z

(
I2 ⊗ΘT

)
+ ε

ε ∼ N [0,Σ⊗ In] ; Σ ∼ IW [ν,Ψ]

BZi ∼ N
[
wiBW , diag

(
σ2

1,Z,, σ
2
2,Z

)
⊗ P−1

]
for i = 1 . . . I

σ2
m,Z ∼ IG [am,Z , bm,Z ] for m = 1, 2

BWk
∼ N

[
0, diag

(
σ2

1,Wk
, σ2

2,Wk

)
⊗ P−1

]
σ2
m,Wk

∼ IG [am,Wk
, b,mWk

] for m = 1, 2 and k = 1 . . . p. (5)

Note that the residual covariance matrix Σ is now of size (2D)× (2D), and that the columns of BZ , BW

include basis coefficients for both Y 1 and Y 2. This model extends the univariate outcome model (4),

but the Gibbs sampler and variational Bayes approximations can be directly modified for bivariate data.

Similarly, the method for setting initial values and choosing hyperparameters given in Section 2.3 can be

adapted to model (5).
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3 Simulations

We demonstrate the performance of our method using a simulation in which generated data mimic the

motivating application. Data are generated from a univariate outcome model in which the categorical

predictor has three levels:

Yij(t) =

2∑
p=0

I(wi = p)βobsp (t) + bi(t) + εij(t) (6)

The number of subjects I is set to (a) 60, (b) 120, or (c) 180. In all cases, we fix the number of observations

per subject to be Ji = 5, set the size of the grid on which curves are observed to be D = 25, and use

an equal number of subjects for each of the three levels of w. Subject-level random effects bi(t) are

distributed N
[
0,Σb,obs

]
and curve-level residuals εij(t) are distributed N

[
0,Σε,obs

]
. Coefficient functions

βobsp (t), random effect covariance Σb,obs, and residual covariance Σε,obs are empirical estimates derived from

the observed P Yij (t) curves using trajectories to the target at 180◦. We use three levels of disease status

(control, mild stroke, severe stroke) as the categorical predictor w, and use only the dominant arm. From

the observed data, we estimate fixed and random effects using the approach taken to select initial values

described in Section 2.3; covariance matrices Σb,obs and Σε,obs are empirical estimates of observed random

effects and residuals. To illustrate the simulation design, Figure 2 shows the coefficient functions in the

left panel. The middle panel of Figure 2 shows a complete simulated dataset with I = 60, and highlights

data for three subjects.

For each sample size, we generate 100 datasets according to model (6). Parameters are estimated using

the Gibbs sampler and variational Bayes algorithm described in Sections 2.1 and 2.2, respectively, with

hyperparameters and initial values chosen as in Section 2.3. For the Gibbs sampler, we used chains of

length 5000 and discarded the first 1000 as burn-in. To provide a frame of reference for our methods,

we compare to the pffr() function in the refund R package. This implements the penalized function-

on-function regression model (of which ours is a special case), and estimates parameters in a frequentist

mixed model framework (Scheipl et al., 2013); to the best of our knowledge, pffr() represents the current

state-of-the-art in function-on-scalar regression with subject-level random effects.
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Figure 2: The left panel shows the three coefficient functions used to simulate data. The middle panel
shows a complete simulated data set, with three subjects (one from each group) highlighted. The right
panel shows the true coefficient functions, as well as their estimates and credible intervals derived from the
dataset shown in the middle panel.

The left panels of Figure 3 show the integrated mean squared error IMSE =
∫ (

β̂(t)− β(t)
)
dt for each

coefficient function, estimation method, and sample size. IMSEs are indistinguishable for the Gibbs sampler

and variational Bayes approaches, indicating that for posterior means the variational Bayes approximation

is reasonable. As expected, IMSEs decrease as sample size increases. Both approaches are comparable

to or somewhat outperform the frequentist mixed model approach. An abberration in the mixed model’s

performance is seen for I = 120, most likely due to incorporating population-level fixed effects into subject-

level random effects. The right panel of Figure 3 shows the computation time for each sample size and

approach. Not surprisingly, the variational Bayes algorithm is substantially faster than the complete Gibbs

sampler. However, there are also meaningful improvements in computation time comparing the variational

Bayes algorithm to the mixed model: for i = 180, the median computation time for the variational Bayes

approach was roughly 15 seconds, while the median computation time for the mixed model was roughly

45 minutes. This discrepancy in computation time may be due to the fact that both Bayesian approaches

are tailored to the model at hand, while pffr() can be used in more general settings.

Table 1 presents the average coverage probability of 95% pointwise confidence intervals constructed

using the Gibbs sampler, the variational Bayes algorithm, and the frequentist mixed moedl for each coef-

ficient function and sample size. For both of the proposed Bayesian approaches, coverage approaches the

nominal level and is often between .92 and .95. Coverage is somewhat lower for β1(t); this may stem from

oversmoothing the coefficient function, which is relatively (but not perfectly) flat. As expected, coverage
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Figure 3: Simualtion results. The left panels show IMSE, defined as IMSE =
∫ (

β̂(t)− β(t)
)
dt, for each

coefficient function, sample size, and estimation technique. The right panel show computation time for
each sample size and estimation method.

improves as sample size increases. For the mixed model coverage is well below nominal levels for all co-

efficients and sample sizes; possible causes for this are the assumption that errors are independent white

noise and the lack of a hierarchical framework for model estimation. Although coverage for the variational

Bayes approximation is reasonable in our simulations, we do not necessarily recommend basing inference

in practice on this approach due to the difficulty in verifying the assumptions regarding the factorization of

the posterior distribution. Rather, we favor the variational algorithm as a fast method for model building

and base inference on a full Gibbs sampler.

Gibbs Sampler Variational Bayes Frequentist MM
β0(t) β1(t) β2(t) β0(t) β1(t) β2(t) β0(t) β1(t) β2(t)

I = 60 0.96 0.89 0.92 0.94 0.86 0.90 0.40 0.55 0.47
I = 120 0.93 0.91 0.93 0.92 0.89 0.92 0.09 0.33 0.04
I = 180 0.94 0.93 0.94 0.93 0.92 0.92 0.46 0.51 0.37

Table 1: Average coverage of 95% credible intervals constructed using the Gibbs sampler, variational Bayes
algorithm, and pffr(). Coverages are expressed as percents.

4 Application

We now apply the developed methods to the motivating data described in Section 1.1. In our dataset

affected patients exhibit arm paresis, a weakness or motor control deficit affecting either the dominant or

non-dominant arm, due to a unilateral stroke. Patients experienced stroke more than 6 months prior to

data collection, meaning that observed motor control deficits are not due to short-term effects but rather
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are chronic in nature. To quantify the severity of arm impairment we use the Upper Extremity portion of

the Fugl-Meyer motor assessment, a well known and widely used clinical assessment of motor impairmen.

Fugl-Meyer scores were assessed for the affected arm only, and for upper extremity testing scores range

from a 0 to 66 with 66 indicating healthy function. Controls were not scored and are were assigned a

Fugl-Meyer score of 66. Kinematic data collected for the left hand were reflected through the Y axis, and

thus are in the same intrinsic joint space as data for the right hand (i.e., motions to the target at 180◦

reach across the body and involve both the shoulder and elbow).

Our focus is the effect of the severity of arm impairment on control of visually-guided reaching, where

impairment is quantified using the Fugl-Meyer score. In addition to impairment severity, we control for

important covariates in our regression modeling. We adjust for target direction (with 8 possible targets,

treated as a categorical predictor); hand used (dominant and non-dominant); whether the arm is affected

by stroke (affected and unaffected); and, potentially, interactions between these variables. Interactions

of impairment severity and other covariates are possible, and are likely for target direction: the effect of

stroke may be greatest to the more biomechanically difficult targets that involve coordination of multiple

joints.

Our data analysis proceeds in two parts and focuses on estimation of the bivariate model (5). First, we

use the variational Bayes algorithm developed in Section 2.2 to explore several possible models that include

different combinations of target, hand used, affectedness, and impairment severity as well as potential

interactions. In all models, subject-level random effects are estimated for each target and hand; these

effects are a priori assumed to be independent. The computational efficiency of the variational Bayes

algorithm is crucial at this stage, allowing the fast evaluation and comparison of models. After identifying

a plausible final model, we estimate all model parameters using the complete Gibbs sampler described in

Section2.1 and base inference for the effect of stroke on this analysis.

4.1 Exploratory analyses using variational Bayes

In the following, we are interested in estimated fixed effects using a variety of structures for the population

mean. We estimate all models using the variational approximation described in Section 2.2. Computation

time was under 20 minutes for each model we consider; the importance of fast computation in the model
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building stage cannot be understated, since it allows the consideration and refinement of many candidate

models.

As a reference for the more complex structures that follow, we began with a model that uses only target

direction as a predictor. This model addresses directional variation only, but the eight fixed effects account

for roughly 90% of observed variance in the outcome. Following this, several models that included the

Fugl-Meyer score, hand used, and affectedness as predictors were considered. Finally, we compared to a

model in which impairment severity was treated as a categorical variable based on a Fugl-Meyer threshold

of 44 (Chae et al., 1998). This model was used to check the assumption that the effect of Fugl-Meyer is

roughly linear: separate effects are estimated for each impairment severity category and no restriction is

placed on their shape.

Table 2 provides the fixed effects used in each of the models we consider, the number of fixed effects

for each model, and the percent of outcome variance explained by fixed effects. Percent variance explained

is given relative to the model with only target direction as a predictor using

Relative PVE = 100×

1−
Var

[
vec
(
Y − ŶModel m

)]
Var

[
vec
(
Y − ŶModel 0

)]
 (7)

for models m ∈ 1, . . . , 8, where Y is the matrix of observed trajectories and ŶModel m is the matrix of

estimated trajectories based on fixed effects in Model m.

The poor performance of Models 1 and 3 indicate the importance of interaction between target and

impairment severity, due to the target-specific effect of stroke due to differing levels of biomechanical

difficulty. Models 5 and 6 significantly improve over model 4 by adding interactions with hand used and

affectedness, respectively. The comparability of these two models may be due to the fact that in our

dataset, the affected hand was more likely to be the dominant hand. Model 7 explains the highest percent

of outcome variance, and is the saturated model using Fugl-Meyer as a continuous predictor. Interestingly,

Model 7 outperforms Model 8, the saturated model using a categorical impairment severity measure,

using fewer fixed effects. For all models, the fixed and random effects together explain roughly 50% of

outcome variance; the remaining 50% is residual variance around subject-level means. This partitioning of

variance usefully quantifies the extent to which motor control is explainable by covariates, subject-specific
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Model Fixed Effects Number of fixed effects Relative PVE for fixed effects

0 Tar 8 Reference
1 FM+Tar 9 0.1
2 FM×Tar 16 4.7
3 FM+Tar+Hand 10 0.3
4 FM×Tar+Hand 17 4.9
5 FM×Tar×Hand 32 8.4
6 FM×Tar×Aff 32 8.9
7 FM×Tar×Hand×Aff 64 11.9
8 Cond×Tar×Hand×Aff 80 9.7

Table 2: Description and comparison of models considered. Fixed effects structure is described in the
second column, where “Tar” represents the target direction (as a categorical variable); “Hand” represents
hand used (dominant, non-dominant); “Aff” indicates an affected hand; “Cond” represents possible disease
conditions (control, moderate stroke, severe stroke,); and “FM” is the continuous Fugl-Meyer score. In the
second column, “+” indicates additive effects and “×” indicates interactions. The number of fixed effects
induced by the model structure is given in the third column. The fourth column provides the percent of
outcome variance explained by the model relative to a model with only target as a covariate (defined in
equation (7)).

deviations, and trajectory-level variation. In Section 4.2 we discuss inference for Model 7.
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Figure 4: Comparison of fixed effects for Models 7 and 8. Estimated effects for the affected dominant and
unaffected non-dominant hand for a moderately and severely affected stroke patient are shown, as well as
effects for a healthy control dominant and non-dominant hand.

Figure 4 compares the estimated fixed effects from Models 7 and 8. In particular, we show the es-

timated effect for a healthy control, for a moderately affected stroke patient (Fugl-Meyer score 56) with

stroke affecting the dominant hand, and for a severely affected stroke patient (Fugl-Meyer score 26) with

stroke affecting the dominant hand. Fugl-Meyer scores were chosen as the average of observed scores in

the moderate and severe groups. Estimated effects for both the dominant (affected) and non-dominant

(unaffected) are given. For the dominant hand, the close agreement of estimated fixed effects indicates

that the assumption of a linear effect for Fugl-Meyer is reasonable. Neither model indicates a systematic
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effect of stroke in the unaffected hand, a reasonable finding given that our data set consists of patients

with unilateral stroke.

Estimates of subject-level effects are shown in Figure 5 for two subjects (separately by row) overlayed

on the observed trajectories. Fixed effects estimates based on Model 7 are shown in bold solid lines and

subject-level estimates including random effects are shown in bold dashed lines. In the top row is a control

subject’s dominant hand; fixed effects and random effects estimates differ only slightly, indicating relatively

little subject deviation from the population mean. In the bottom row is a severely affected (Fugl-Meyer 28)

subject’s affected dominant hand. Here, fixed effects are noticeably curved for several targets indicating a

systematic effect of stroke. Subject-level estimates differ from the fixed effects in some cases (particularly

for targets at 0◦ and 180◦), illustrating the idiosyncratic effects of stroke in this patient. Note that data

for these patients is shown in Figure 1.
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Figure 5: Observed data (faint solid lines) overlayed with estimated fixed (bold solid lines) and random
(bold dashed lines) effects. Data for two subjects are shown: in the top row, the dominant hand of a
control subject, and in the bottom row the affected dominant hand of a severe stroke patient. Data for
these subjects appears in Figure 1.
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4.2 Full Bayesian analysis

After exploring several candidate fixed effects structures, we fit Model 7 using a fully Bayesian analysis to

explore inferential properties of estimated coefficients. In particular, we are interested in the target- and

hand-specific systematic effects of the Fugl-Meyer score as a continuous covariate. For our final model, we

used 5,000 iterations of the Gibbs sampler described in Section 2.1 and discard the first 1,000 as burn-in;

visual inspection of chains (not shown) indicate good mixing. Hyperparameters and initial values were

chosen as described in Section 2.3. Computations took 7.5 days, which emphasizes the importance of a

fast approximation for data exploration and model building.

Figure 6 shows the estimated effect of a ten unit difference in Fugl-Meyer score in a dominant hand

affected by stroke separately for the targets at 0◦ and 180◦. For both targets, we show the marginal

effect on the X and Y position curves in the left panels with pointwise posterior credible intervals. These

intervals indicate a significant effect of Fugl-Meyer score on hand position for t > .5 and correspond to

the over-reach and increased curvature observed in Figure 4. The right panels in Figure 6 show a sample

from the posterior distribution of the effect of Fugl-Meyer on X and Y position jointly as a function of t; a

red line shows the null of no difference. For the target at 180◦ this joint distribution suggests an effect for

.25 < t < .5 not observed in either marginal plot. Though we focus on only the two most biomechanically

challenging targets here, similar systematic effects are found to each of the other targets.
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Figure 6: Inference for the linear effect of Fugl-Meyer score for targets at 0◦ and 180◦ based on the full
Gibbs sampler estimation of Model 9. For both targets, marginal plots of βX(t) and βY (t) with 95%
credible intervals are shown at the left. The joint distribution of (βX(t), βY (t)) as a function of t is shown
in the right panel.
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5 Concluding remarks

This manuscript has focused on the development of a regression framework for the analysis of kinematic

data used to assess motor control in stroke patients. Our model allows flexible mean structures, subject-level

random effects, bivariate outcomes and correlated errors. We develop a hierarchical Bayesian estimation

framework; crucially, a fast and accurate variational Bayes approximation to the full Gibbs sampler al-

lows extensive data exploration and model building before estimation with the full Bayesian approach.

Implementations of both approaches and complete simulation code is publicly available.

The application of our developed methodology to the motivating data yields novel insights into the

effect of arm impairment on control of visually-guided reaching. We demonstrate consistent, systematic

effects of stroke on reaching trajectories using the Fugl-Meyer score as a continuous covariate that are

direction-dependent. Our final model indicates that roughly 10% of variability in observed trajectories is

due to systematic effects of impairment severity; subject-specific idiosyncrasies account for an additional

40%. Although not of primary concern here, our application also allows comparisons of dominant and

non-dominant hand among controls, as well as consideration of systematic effects in the unaffected hand

following stroke.

Future work may take several directions. In statistical methodology, additional flexibility in the mean

structure, for instance by allowing non-linear effects of covariates, could broaden the applicability of the

model. Parameterizing the residual correlation structure as a function of impairment severity would more

accurately reflect the disease process. Adaptive smoothing and penalization for fixed effects could yield

more accurate inference in some cases. Reversing the function-on-scalar problem, using kinematic data as

a predictor for disease type may illuminate differences between disease types, but classification based on

collections of trajectories is an open problem. In the applied setting, extension to three-dimensional kine-

matics will be necessary as experiments allow more complex reaching motions. Longitudinal experiments

to explore treatment effects and describe the natural history of recovery are underway; accompanying

methods will be needed to account for within-subject correlations over time.
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Appendices to: Assessing Systematic Effects of Stroke on Motor Control using

Hierarchical Function-on-Scalar Regression

Jeff Goldsmith and Tomoko Kitago

This appendix contains derivations of full conditional distributions for the full Gibbs sampler and

optimal densities for the variational Bayes algorithm. Derivations are for the univariate model; for the

bivariate outcome model presented in Section 2.4 slight augmentations are necessary but straightforward.

For completeness, we briefly describe the data and model of interest. The data are [Yij(t),wij ] for subjects

i = 1, . . . , I and visits j = 1, . . . Ji, giving a total of n =
∑

i Ji observations. Univariate functional outcomes

Yij(t) are observed on a regular grid of length D for all subjects and visits. We are interested in estimating

the parameters in

Y = ZBT
ZΘT + ε

ε ∼ N [0,Σ⊗ In] ; Σ ∼ IW [ν,Ψ]

BZi ∼ N
[
wiBW , σ

2
ZP

−1
]

for i = 1 . . . I;σ2
Z ∼ IG [aZ , bZ ]

BWk
∼ N

[
0, σ2

Wk
P−1

]
, σ2

Wk
∼ IG [aWk

, bWk
] for k = 1 . . . p. (A.1)

In this model, BT
W is the matrix of coefficients for fixed effects and BT

Z is the matrix of coefficients for

random subject effects. Additionally, Y , W , Z and Θ are the observed outcomes, the fixed and random

effect design matrices, and the b-spline basis matrix, respectively.

A Gibbs Sampler

In this section we provide full conditional distributions for the parameters in model (A.1). Let 1m be a

length m vector of 1’s and Y i denote the rows of Y for subject i.

• For BZi , we have that

p [vec (BZi) |rest] ∝ N
[
µBZi

,ΣBZi

]
where

ΣBZi =

(
(1Ji ⊗Θ)T (IJi ⊗ Σ−1)(1Ji ⊗Θ) +

1

σ2
Z

P

)−1

A.1



and

µBZi
= ΣBZi

(
(1Ji ⊗Θ)T (IJi ⊗ Σ−1)vec

(
(Y i)

T
)

+
1

σ2
Z

P (BWw
T
i )

)
.

• For BW , we have that

p [vec (BW ) |rest] ∝ N
[
µBW ,ΣBW

]
where

ΣBW =

(
1

σ2
Z

(W ⊗ IKt)T (II ⊗ P )(W ⊗ IKt) + diag

(
1

σ2
Wk

)
⊗ P

)−1

and

µBW = ΣBW

(
1

σ2
Z

(W ⊗ IKt)T (II ⊗ P )vec (BZ)

)
.

• For σ2
Z , we have that

p
[
σ2
Z |rest

]
∝ IG

[
az +

I ∗Kt

2
, bz +

1

2

∑
i

(
BZi −BWw

T
i

)T
P
(
BZi −BWw

T
i

)]
.

• For σ2
Wk

, we have that

p
[
σ2
Wk
|rest

]
∝ IG

[
aWk

+
Kt

2
, bWk

+
1

2
BT
Wk
PBWk

]
.

• For Σ, we have that

p
[
σ2
Wk
|rest

]
∝ IW

[
ν +

∑
i

Ji,Ψ +
(
Y −ZBT

ZΘT
)T (

Y −ZBT
ZΘT

)]
.
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B Variational Bayes Algorithm

In this section we present the iterative algorithm for updating optimal densities q∗ in the variational Bayes

approximation to the full posterior of model (A.1). Additionally, we provide the q-specific lower bound Lq

used to monitor convergence of the algorithm.

In the following, we approximate the full posterior p(BZ ,BW , σ
2
W1
, . . . , σ2

Wp
, σ2

Z ,Σ|Y ) using q(·), where

we assume the partitioning

q
(
BZ ,BW , σ

2
W1
, . . . , σ2

Wp
, σ2

Z ,Σ
)

= q(BZ)q(BW )

(
p∏

k=1

q(σ2
Wk

)

)
q(σ2

Z)q(Σ).

Based on this factorization, it can be shown that:

• the optimal density q(BZi) is N
[
µq(BZi )

,Σq(BZi )

]
for all subjects i;

• the optimal density q(BW ) is N
[
µq(BW ),Σq(BW )

]
;

• the optimal density q(σ2
Z) is IG

[
aZ + I∗Kt

2 , bq(σ2
Z)

]
;

• the optimal density q(σ2
Wk

) is IG
[
aW + I∗Kt

2 , bq(σ2
Wk

)

]
for all coefficients k;

• the optimal density q(Σ) is IW
[
ν +

∑
i Ji,Ψq(Σ)

]
where the notation µq(φ) and Σq(φ) indicate the mean and variance for Normal densities q(φ); similar

notation is used for the parameters in inverse Gamma and inverse Wishart densities. Parameters in these

densities is updated iteratively according to the following algorithm.
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Algorithm 1 Iterative scheme for obtaining the optimal density parameters in the function-on-scalar
regression model (A.1).

Initialize: Bq(σ2
g)...Bq(σ2

Y ) > 0, µq(C) = 0, µq(g) = 0, µq(β) = 0, Σq(g) = I, Λq = I.
Cycle:

For all i:

Σq(BZi )
←
(

(1Ji ⊗Θ)T (IJi ⊗
(

Ψq(Σ)

ν+
∑
i Ji

)−1
)(1Ji ⊗Θ) +

aZ+
I∗Kt

2
b
q(σ2

Z
)
P

)−1

µq(BZi )
← Σq(BZi )

(
(1Ji ⊗Θ)T (IJi ⊗

(
Ψ+Ψq(Σ)

ν+
∑
i Ji

)−1
)vec

(
(Y i)

T
)

+
aZ+

I∗Kt
2

b
q(σ2

Z
)
P (µq(BW )w

T
i )

)
For all k:

Σq(BWk ) ←

(
aZ+

I∗Kt
2

b
q(σ2

Z
)

(W ⊗ IKt)T (II ⊗ P )(W ⊗ IKt) + diag

(
aW+

Kt
2

b
q(σ2

Wk
)

)
⊗ P

)−1

µq(BWk ) ← Σq(BW )

(
aZ+

I∗Kt
2

b
q(σ2

Z
)

(W ⊗ IKt)T (II ⊗ P )vec
(
µq(BZ)

))

bq(σ2
Z) ← bZ + 1

2

∑
i

(
µTq(BZi )

Pµq(BZi )
+ tr

[
PΣq(BZi )

]
− 2wiµ

T
q(BW )Pµq(BZi )

+wiµ
T
q(BW )Pµq(BW )w

T
i +widiag

(
tr
[
PΣq(BWk )

])
wT
i

)
For all k:

bq(σ2
Wk

) ← bW + 1
2

(
µTq(BWk )Pµq(BWk ) + tr

[
PΣq(BWk )

])
Ψq(Σ) ← Ψ + Y TY − Y TZµTq(BZ)Θ

T + Θµq(BZ)Z
TY + Θµq(BZ)Z

TZµTq(BZ)Θ
T

+
∑

i JiΘΣq(BZi )
ΘT

until the increase in Lq is negligible.
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Finally, the expression for the q-specific lower bound of the marginal log-likelihood is

Lq∗ =

∫
q(φ) log

p(y,φ)

q∗(φ)
dφ =

=
1

2

∑
i

log(|Σq(BZi )
|) +

1

2

∑
k

log(|Σq(BWk )|)−(
az +

I ∗Kt

2

)
log(bq(σ2

Z))−
∑
k

(
aw +

Kt

2

)
log(bq(σ2

Wk
))−(

ν +
∑

i Ji
2

)
log(|Ψq(Σ)|) + const.

where “const.” represents an additive constant not affected by updates to the q density parameters. It

should be noted that this constant contains the term log(|P 1|), thus necessitating a full rank penalty matrix

if Lq is used to monitor convergence of the algorithm.
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