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Abstract

This manuscript considers regression models for generalized, multilevel functional responses: func-

tions are generalized in that they follow an exponential family distribution and multilevel in that they are

clustered within groups or subjects. This data structure is increasingly common across scientific domains

and is exemplified by our motivating example, in which binary curves indicating physical activity or in-

activity are observed for nearly six hundred subjects over five days. We use a generalized linear model

to incorporate scalar covariates into the mean structure, and decompose subject-specific and subject-

day-specific deviations using multilevel functional principal components analysis. Thus, functional fixed

effects are estimated while accounting for within-function and within-subject correlations, and major

directions of variability within and between subjects are identified. Fixed effect coefficient functions

and principal component basis functions are estimated using penalized splines; model parameters are

estimated in a Bayesian framework using Stan, a programming language that implements a Hamiltonian

Monte Carlo sampler. Simulations designed to mimic the application indicate good estimation accuracy

and inference with reasonable computation times for moderate datasets, in both cross-sectional and

multilevel scenarios; code is publicly available. In the application we identify effects of age and BMI

on the time-specific change in probability of being active over a twenty-four hour period; in addition,

the principal components analysis identifies the patterns of activity that distinguish subjects and days

within subjects.

Key Words: Penalized Splines, Generalized Functional Data, Bayesian Inference, Hamiltonian Monte

Carlo, Accelerometry.
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1 Introduction

1.1 Motivating data

Continuous monitoring of activity using accelerometers and other wearable devices promises to revolutionize

the measurement of physical activity by providing objective, unbiased observation in unprecedented minute-

by-minute detail over several days or weeks. Accelerometers generally measure activity through electrical

signals that are a proxy measure for acceleration (Spierer et al., 2011; Trost et al., 2005; Ward et al., 2005).

“Activity counts” are devised by summarizing the voltage signals across a monitoring period known as an

epoch (a one-minute epoch is common), and can be dichotomized into “active” and “inactive” epochs to

study sedentary behavior. Thus, these devices give rise to generalized multilevel functional observations:

generalized because both activity counts and the derived binary “active” versus “inactive” outcomes do

not follow a Gaussian distribution; multilevel because each subject has several days of data; and functional

in that continuous 24-hour trajectories are considered the basic unit of observation.

Accelerometers have already been deployed to explore many pressing public health contexts. Examples

include studies of the decline in physical activity associated with aging and frailty (Schrack et al., 2014), of

the complex behavioral relationships between childhood asthma and physical activity (Rundle et al., 2009),

and of the real-time surveillance and detection of symptomatic changes in congestive heart failure patients

(Howell et al., 2010). Unfortunately, the analysis of accelerometer data typically reduces thousands of data

points to a single summary, such as the total activity count over a 24-hour period, and few current methods

utilize the richness of densely observed activity data. This immense data reduction leaves important

scientific questions unaddressed. How are daily physical activity trajectories related to subject covariates,

like age, gender, BMI, or socio-demographic status? To what degree do subjects differ from each other in

their patterns of activity and inactivity, and to what degree do multiple days differ within one subject?

Our motivation in this manuscript is to identify covariate effects and characterize residual patterns of

activity in accelerometer data collected from elderly subjects enrolled in the Baltimore Longitudinal Study

on Aging (Schrack et al., 2014). BLSA is a study of normative human aging with healthy, functionally-

independent participants. Once enrolled, participants are followed for life and undergo extensive testing

every 1-4 years depending on age. The sub-sample we consider in this paper consists of 583 men and

women who wore the Actiheart activity monitor for 5 days; we focus on binary “activity” and “inactivity”

daily trajectories (see Figure 5 for example data from two subjects). The goals of this work are to describe

and quantify the effects of age and BMI on the time-varying probability of being active over the course

of a day, and to characterize the patterns of activity that differentiate subjects from each other and days

within subjects. In addition to this motivating dataset, the proposed methods will be directly relevant to
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existing and future accelerometer studies including the National Health and Nutrition Examination Survey

(Troiano et al., 2008), the Women’s Health Study (Shiroma et al., 2013), the Health ABC Study (Atkinson

et al., 2007), and the Columbia Center for Children’s Environmental Health birth cohort study.

1.2 Statistical framework

Speaking generally, we observe data [Yij(t),xij ] for subjects 1 ≤ i ≤ I, visits 1 ≤ j ≤ Ji and times

t ∈ [0, T ], where Yij(t) is a generalized response curve and xij is a length p vector of scalar covariates. For

each time t, we assume Yij(t) is a realization of random variable with an exponential family distribution.

We introduce the generalized multilevel function-on-scalar regression model

E[Yij(t)|bi(t), vij(t)] = µij(t)

g(µij(t)) = β0(t) +
p∑

k=1

xij,kβk(t) + bi(t) + vij(t) (1)

in which g(·) is a known link function, the βk(t) are fixed effect coefficient functions corresponding to the

scalar covariates x, bi(t) is a subject-specific random deviation from the fixed effect mean structure, and

vij(t) is a subject- and visit-specific random deviation from the subject-specific mean. As is detailed in

later sections, we estimate fixed effect coefficients using a penalized spline expansion. The subject-level

and subject-visit-level effects (bi(t) and vij(t), respectively) are decomposed using a multilevel functional

principal components analysis that separates within- and between-subject directions of variability, and

principal component basis functions are estimated using penalized splines. All model parameters – including

fixed effect spline coefficients, principal component spline coefficients, and principal components scores –

are jointly estimated in a Bayesian analysis.

Elements of our analysis have antecedents in the statistical literature. Functional principal components

analysis for cross-sectional continuous-valued curves has a long history in functional data analysis as a

tool for dimension reduction and for identifying the major patterns that contribute to variation across

curves; see Ramsay and Silverman (2005, §8.2) for an overview. Yao et al. (2005) describe a broadly used

framework for FPCA in which the observed covariance matrix is calculated from discretely observed curves

and decomposed, often following bivariate smoothing, to estimate principal component basis functions.

Curve-specific scores (or loadings) are estimated using a mixed model framework. However, Goldsmith

et al. (2013) noted that this standard FPCA method implicitly conditions on the estimated covariance and

thus fails to account for uncertainty in estimated basis functions, meaning inference for individual curves

can be poor. For multilevel functional data, Di et al. (2009) estimates both within- and between-subject

covariances, and subsequently decomposes these into subject-level and visit-level principal component basis
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functions; scores are again estimated in a mixed model framework. With some exceptions (for example,

Cardot (2007) and Jiang and Wang (2010)), FPCA methods typically focus on the decomposition of curves

around a common population mean rather incorporating covariates into the mean structure.

van der Linde (2008) develops a Bayesian approach to FPCA using low-dimensional spline expansions

for basis functions and estimating parameters through a variational approximation to the full posterior;

this work is based on the probabilistic and Bayesian (non-functional) PCA methods popularized in Tip-

ping and Bishop (1999) and Bishop (1999). Bayesian PCA takes advantage of the connection between the

mathematical formulation of traditional PCA and the Gaussian likelihood function. This connection does

not encode the orthonormality constraints imposed by traditional PCA, and instead is more easily inter-

preted as a factor analysis. Some Bayesian methods have introduced orthonormality constraints (Šmı́dl

and Quinn, 2007) at the expense of considerably more difficult inference and computation times, while

others favor the latent factor analysis interpretation. We follow the latter approach. As with other factor

analyses it is possible to rotate estimated components into their equivalent orthonormal space and thereby

recover the appealing interpretation of traditional PCA.

There is an extensive literature for function-on-scalar regression with real-valued response curves.

Brumback and Rice (1998) and Guo (2002) use penalized splines to model both population-level effects

and curve-level deviations – the former relied on the use of fixed effects for computational convenience and

the latter utilized random effect models. Several approaches have been developed that focus on population

fixed effects only, treating individual curves as errors around the covariate-dependent mean; (Ramsay and

Silverman, 2005, §13.4) provides an introduction. Developments in Reiss and Huang (2010) and Scheipl

et al. (2013) use penalized splines to model fixed effects in cross sectional and multilevel models, respec-

tively, using cross validation or restricted maximum likelihood to select tuning parameters. A criticism

of these approaches is that they make the assumption that functional errors are uncorrelated over the

domain, which typically does not hold for functional data and can lead to poor inference for fixed effects.

Wavelet-based Bayesian functional mixed models are presented in Morris and Carroll (2006) and Morris

et al. (2011) with errors in the wavelet space assumed to be independent, an assumption heuristically

justified by the “whitening” property of wavelet transformations. Bayesian penalized splines are used

in Baladandayuthapani et al. (2007) assuming error curves are composed only of uncorrelated measure-

ment error. Recently, Goldsmith and Kitago (2013) developed a Bayesian penalized spline approach for

multilevel function-on-scalar regression that models potential residual correlations explicitly, and showed

posterior credible intervals for fixed effects achieve nominal coverage in simulations.

In contrast to the rich literature for real-valued functional data, relatively little work exists for gener-

alized functional responses. Hall et al. (2006) directly extend the real-valued FPCA method of Yao et al.

(2005) to generalized data by positing a latent continuous process that, through a known link function, gives
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rise to the observed generalized outcome. The mean and covariance are estimated using observed data, and

the latent mean and basis functions are obtained by inverting the known link function. Inference is based

on bootstrap confidence intervals, although coverage properties in simulations are not reported. Building

on the developments in Schein et al. (2003) for non-functional Bayesian generalized PCA, van der Linde

(2009) develops a variational Bayesian algorithm for generalized FPCA that uses low-dimensional spline

representations for the mean and basis functions. The variational approach gives a computationally effi-

cient approximation to the full posterior but neglects correlation among model parameters. In FPCA, the

population mean and curve-specific deviations are highly correlated, meaning that a variational approach

may give good point estimates but not yield accurate inference.

With respect to the preceding literature review, our methods are statistically novel in several important

ways. We provide a unified framework for both generalized function-on-scalar regression and functional

principal components analysis. From a regression standpoint, we explicitly model residual correlation to

improve inference for population-level effects; at the same time, the FPCA framework describes major

directions of variability. The use of fully Bayesian estimation and inference, rather than variational Bayes

approximations, avoids unreasonable assumptions of posterior independence and provides joint inference

that has been shown to have good numerical properties in simulations that mimic our motivating data.

Finally, we introduce generalized multilevel functional data and develop methods for this scenario; all

methods can be simplified appropriately for cross-sectional data.

The remainder of the paper is organized as follows. Section 2 presents the novel methodological contri-

butions of the manuscript, and includes subsections on the model specification, computation, and rotating

estimated components to induce orthonormality. Section 3 presents simulation studies designed to mimic

the motivating data and explore the estimation accuracy and inferential properties of the proposed meth-

ods. Section 4 presents the real data analysis. We close with a discussion in Section 5.

2 Methods

2.1 Model

Notationally, for subjects 1 ≤ i ≤ I and visits 1 ≤ j ≤ Ji let Yij(t) be a generalized response curve arising

from an exponential family and xij be an accompanying length p vector of scalar covariates. Our interest

is in fitting model (1), which contains population-level fixed effects βk(t), subject-level deviations bi(t)

from the covariate-dependent mean, and subject-visit specific deviations vij(t) from the subject-specific

mean. Generalizing the multilevel FPCA approach (Di et al., 2009), we expand subject-specific (level 1)
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and subject-visit-specific (level 2) effects in terms of populations basis functions and unique scores:

E[Yij(t)|bi(t), vij(t)] = µij(t)

g(µij(t)) = β0(t) +
p∑

k=1

xij,kβk(t) + bi(t) + vij(t)

≈ β0(t) +
p∑

k=1

xij,kβk(t) +
K(1)∑
k=1

c
(1)
ik ψ

(1)
k (t) +

K(2)∑
k=1

c
(2)
ijkψ

(2)
k (t). (2)

The approximation in the third line stems from the use of truncated functional principal components

expansions for subject-specific effects bi(t) and subject-visit-specific effects vij(t), and is implicit in all

FPCA methods. Level 1 and level 2 basis functions (ψ(1)
k (t) and ψ

(2)
k (t), respectively) describe the major

patterns that generate variation across subjects and across visits within subjects, and associated scores (c(1)
ik

and c
(2)
ijk, respectively) indicate the subject- and subject-visit-specific contribution of each basis function.

In practice curves are observed on a finite grid of length D that, for notational simplicity, we assume

is shared across subjects. For finite data, let Y be the (
∑

i Ji) × D matrix of row-stacked generalized

functional response; X be the (
∑

i Ji) × (p + 1) fixed effects design matrix constructed by row-stacking

the xij ; β be the (p + 1) × D matrix with rows containing βk(t) evaluated on the finite grid; Z be a

(
∑

i Ji)×I random intercept design matrix for the subject-specific effects; b be the I×D matrix with rows

containing bi(t) evaluated on the finite grid; and v be the (
∑

i Ji)×D matrix with rows containing vij(t)

evaluated on the finite grid. Fixed effects and FPCA basis functions at both levels are expressed using a

spline expansion. Let Θ denote a D×KΘ matrix of cubic B-spline basis functions evaluated over the finite

grid on which functions are observed. Spline coefficients for the fixed effects βk(t), the level 1 FPCA basis

functions ψ(1)(t), and the level 2 FPCA basis functions ψ(2)(t) are columns in the matrices BX , Bψ(1) , and

Bψ(2) , respectively. Thus β = BT
XΘT and, letting C(1) and C(2) be the matrices created by row-stacking

level 1 and level 2 scores for each subject and subject-visit, b = C(1)BT
ψ(1)ΘT and v = C(2)BT

ψ(2)ΘT .

Model (2) can now be re-expressed for finite data using

E[Y |b,v] = µ

g(µ) = Xβ +Zb+ v

= XBT
XΘT +ZC(1)BT

ψ(1)ΘT +C(2)BT
ψ(2)ΘT . (3)

Notationally, model (3) is formulated in a similar fashion as the continuous-valued cross sectional function-

on-scalar regression models described in Ramsay and Silverman (2005, §13.4) and the continuous-valued

multilevel function-on-scalar regression models described in Goldsmith and Kitago (2013). Inference for

model (3) focuses on spline coefficients in the matrices BX , Bψ(1) , and Bψ(2) , and on the principal com-
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ponent score matrices C(1) and C(2).

To ensure flexibility we use a rich B-spline basis by taking KΘ large, but impose smoothness on resulting

coefficient function estimates through the prior specification. In particular, we assume the following priors

for the columns of BX , Bψ(1) , and Bψ(2) :

BXk
∼ N

[
0, σ2

Xk
P−1

]
, for 0 ≤ k ≤ p

B
ψ

(1)
k

∼ N
[
0, σ2

ψ
(1)
k

P−1

]
, for 1 ≤ k ≤ K(1) (4)

B
ψ

(2)
k

∼ N
[
0, σ2

ψ
(2)
k

P−1

]
, for 1 ≤ k ≤ K(2).

In (4), P is a pre-specified penalty matrix that enforces smoothness through the connection between

Bayesian priors and quadratic penalization (Ruppert et al., 2003; Crainiceanu et al., 2005). We use P =

αP0 + (1 − α)P2 where P0 and P2 are zeroth- and second-order derivative penalty matrices (Eilers and

Marx, 1996). Taking 0 < α ≤ 1 balances the universal shrinkage encoded in P0 with the smoothness

constraint of P2, while ensuring P is positive definite and priors are proper. In our simulations and real

data analyses we set α = .1 to predominantly enforce smoothness rather than shrinkage as is common in

FDA; sensitivity analyses have indicated robustness to the choice of α in this analysis.

To complete the model specification, scores vectors are assigned independent standard Normal priors

c
(1)
i ∼ N [0, IK(1) ] and c(2)

i ∼ N [0, IK(2) ], a choice motivated by the factor analysis interpretation of the

model as discussed in the introduction and in Tipping and Bishop (1999). Values for K(1) and K(2) are fixed

constants chosen large enough to model major directions of uncertainty, keeping in mind that smoothness

and shrinkage constraints help to control the effective dimension of the estimated basis. Finally, variance

components σ2
Xk

, σ2

ψ
(1)
k

and σ2

ψ
(2)
k

are assigned IG[0.01, 0.01].

2.2 Computation Using Stan

The model in Section 2.1 is implemented in Stan (Stan Development Team, 2013; Hoffman and Gelman,

2011), using an R interface (R Development Core Team, 2009) for data entry and for summarizing posterior

samples. Stan is an open-source, general purpose programming language for Bayesian analysis that, at

the user interface level, has similarities with BUGS (Lunn et al., 2009) or JAGS (Plummer, 2003). Samples

are generated using Hamiltonian Monte Carlo, an MCMC algorithm that avoids random walk behavior

by using the gradient of the log-posterior (Neal, 2011). In comparison with earlier MCMC algorithms

such as the Gibbs sampler (Geman and Geman, 1984), Hamiltonian Monte Carlo offers fast convergence

and parameter space exploration when posteriors are highly correlated, such as in the case of the fixed,

subject-specific, and subject-day-specific effects in model (2). Code for both model (2) and for an analogous
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cross-sectional model described in Section 3 is publicly available on the first author’s website.

Computation time is a concern in all Bayesian approaches, especially for high-dimensional data such

as those we consider. Here, computation times were reasonable for the moderate datasets considered

in the simulations – taking several minutes for cross-sectional datasets consisting of up to 100 curves

measured on grids of length 100, and taking at most a few hours for multilevel datasets with up to 100

subjects and 4 curves per subject. Real data analyses were more computationally expensive due to the

higher dimensionality and increased complexity, and took several days. Details for computation time are

provided in Sections 3 and 4.

2.3 Rotation

As noted in the introduction, we describe our methodology as a “functional principal components analysis”

despite omitting orthonormality constraints on the estimated basis functions. FPCA has an appealing

and well-established interpretation as estimating the major directions of variation within and between

subjects, and we obtain that interpretation here through a singular value decomposition of the estimated

basis functions. In this subsection we formalize that rotation omitting notation for level 1 and level 2 basis

functions: both are obtained using the same steps.

FPCA is typically posed as an expansion bi(t) ≈
∑K

k=1 c
∗
ikψ

∗
k(t), with the ψ∗k(t) orthonormal basis

functions and scores c∗ik uncorrelated zero mean random variables with non-increasing variances λk. Basis

functions and variances are estimated using a truncated Karhunen-Loève decomposition of the covariance

matrix Var(bi(t)). Within each iteration of the sampler we estimate CBT
ψΘT = CΨ where Ψ are basis

functions evaluated on a finite grid, and we wish to obtain an equivalent C∗Ψ∗ for which Ψ∗ is an orthonor-

mal basis. To do so, we use the singular value decomposition of the Ψ estimated without orthonormality

constraints Ψ = UDV with U ,V unitary matrices and D diagonal. Making a substitution, we have

CΨ = CUDV and define C∗ := CUD and Ψ∗ := V . Moreover, the prior assumption that Var(ci) = I

implies that for each row c∗i of C∗, Var(c∗i ) = Var(ciUD) = DUTVar(ci)UD = DUT IUD = D2. Thus

estimates of the score variance components λk are provided by squaring the diagonal entries of D. This

rotation can be conducted within each iteration of the sampler and, accounting for potential sign changes

in the basis functions, provides a posterior distribution of orthonormal basis functions.

3 Simulations

We demonstrate the performance of our method using a simulation in which generated data mimic the mo-

tivating application. In the following subsections we consider both cross-sectional and multilevel scenarios;

our focus is on assessing the estimation accuracy and inferential properties of the proposed methods. All
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code for the following simulations is publicly available.

3.1 Cross-sectional simulations

We generate binary response curves Yi(t) on an equally spaced grid of length 100 according to the model

E[Yi(t)|bi(t)] = µi(t)

g(µi(t)) = β0(t) + xi1β1(t) +
2∑

k=1

c
(1)
ik ψ

(1)
k (t), (5)

and use the logit link g(·). Model (5) is a simplification of model (2) for the cross-sectional case with one

scalar covariate. We let t ∈ [0, 1] represent a 24-hour period as in the motivating accelerometer study, and in

the following use descriptions motivated by this context. The intercept is β0(t) = −1.5−sin(2tπ)−cos(2tπ),

which roughly mimics a circadian rhythm over one day. The fixed effect β1(t) = 1
20φ( t−.6

.152 ), where φ(·) is

the standard Normal density function, affects the probability of activity in the afternoon but not in the

late evening or early morning, and we generate scalar predictors using xi1 ∼ N(0, 25). The orthogonal

basis functions are chosen to be ψ(1)
1 (t) ∝ −1.5 − sin(2tπ) − cos(2tπ) and ψ

(1)
2 (t) ∝ − sin(4tπ), and are

normalized to 1. The first basis function is amplifies or diminishes the circadian rhythm found in β0(t),

broadly giving higher or lower overall activity patterns, while the second affects activity probabilities in

the early and later afternoon. Subject-level PC scores are generated using variance components are set to

λ1 = 3 and λ2 = 1.5.

One hundred datasets are constructed according to the preceding model for all combinations of sample

size I ∈ {50, 100} and number of estimated principal components K̂ ∈ {2, 5}, giving a total of four possible

simulation designs. For K̂ = 5 the number of estimated PC basis functions is larger than the number of true

basis functions, which is held at K = 2 throughout. For each dataset, we estimate model parameters using

a simplification of the methods described in Section 2 for cross sectional data. Estimation and inference

is based on posterior means and quantiles of 5000 iterations from the sampler, after discarding the first

2000 as burn-in; visual inspection and diagnostics for the one simulated dataset indicate that these levels

are sufficient for convergence to and exploration of the posterior distribution. We quantify estimation

accuracy for fixed effects using the integrated mean squared error IMSE =
∫ 1

0 (βk(t) − β̂k(t))2 dt and for

the latent subject probability trajectories using the average integrated mean squared error AIMSE =
1
I

∑I
i=1

∫ 1
0 (µi(t) − µ̂i(t))2 dt. Inference is evaluated using average pointwise coverage of 95% posterior

credible intervals.

Figure 1 illustrates the simulation design and results for a single dataset with I = 50 and K̂ = 5.

Simulated latent probability curves µi(t) are shown in the left panel, and demonstrate the structure of
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activity trajectories as well as their variability across subjects. The true and estimated fixed effects β0(t)

and β1(t) are plotted in the middle panels, along with 95% credible intervals. Finally, the right panel shows

the observed binary data Yi(t) for one subject in blue, as well as the latent probability curve µi(t) and a

sample from the posterior distribution of µi(t).
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Figure 1: Illustration of data and results for cross-sectional simulations. The left panel show simulated
probability curves µi(t) for all subjects i ∈ 1, . . . , I. The middle panels show fixed effects β0(t) and β1(t)
(top and bottom, respectively) in black, with estimates in red and 95% pointwise credible intervals in
dashed red lines. The right panel shows observed binary responses Y1(t) for subject i = 1 in blue, the
corresponding probability curve µ1(t) in green, and a sample from the posterior of µ1(t) in black.

Table 1 provides the mean (across simulated datasets) IMSE for fixed effects and AIMSE for latent

probability trajectories, as well as mean pointwise coverage and computation time. As one would expect,

increasing sample size improves estimation accuracy for fixed effects; the estimation of fixed effects is

not noticeably affected by changing the number of estimated principal components. Estimation accuracy

for latent subject effects is only moderately improved by increasing the sample size since subject-level

information is not increased, and any improvement would necessarily depend on improved estimation of

fixed effects and PC basis functions. Coverage for fixed effects and latent subject trajectories is near

nominal levels in all cases, although intervals are somewhat conservative for β1(t) and anti-conservative

for µi(t) when K̂ = 2. Computation times increase both with sample size I and the number of estimated

PC basis functions K̂, and range from a few minutes to roughly half an hour. For reference, the IMSEs

appearing in Figure 1 are IMSE(β̂0(t)) = 0.012 and IMSE(β̂1(t)) = 0.0034.

3.2 Multilevel simulations

For the multilevel case, we generate binary response curves Yij(t) according to the model

E[Yij(t)|bi(t), vij(t)] = µij(t)

g(µij(t)) = β0(t) + xi1β1(t) +
2∑

k=1

c
(1)
ik ψ

(1)
k (t) +

2∑
k=1

c
(2)
ijkψ

(2)
k (t) (6)
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IMSE Coverage Comp. Time
β0(t) β1(t) µi(t) β0(t) β1(t) µi(t) (in sec)

I = 50; K̂ = 2 0.026 0.006 0.066 0.936 0.969 0.919 389
K̂ = 5 0.024 0.005 0.064 0.943 0.983 0.965 950

I = 100; K̂ = 2 0.012 0.003 0.050 0.944 0.971 0.924 771
K̂ = 5 0.011 0.003 0.050 0.943 0.978 0.959 1805

Table 1: Cross-sectional results averaged across the 100 simulated datasets. Integrated mean squared errors
are defined as IMSE =

∫ 1
0 (βp(t) − β̂p(t))2 dt for fixed effects and AIMSE = 1

I

∑I
i=1

∫ 1
0 (µi(t) − µ̂i(t))2 dt

for probability curves. Coverage is averaged over 95% pointwise credible intervals. Computation time is
reported in seconds.

again assuming a logit link function. The fixed effects β0(t) and β1(t), scalar covariate xi1, level 1 basis

functions ψ(1)
1 (t) and ψ(1)

2 (t), and level 1 variances λ(1)
1 and λ(1)

2 are as in Section 3.1. To this, we add level

2 basis functions ψ(2)
1 (t) ∝ −1.5 − sin(2tπ) − cos(2tπ) and ψ

(2)
2 (t) ∝ − cos(4tπ), again normalized to 1.

Level 2 variance components are λ(2)
1 = 3 and λ(2)

2 = 1.5. In this setting, the level 1 basis functions describe

subject-level directions of variability and the level 2 basis functions describe subject-day-specific directions

of variability. Setting ψ(1)
1 (t) = ψ

(2)
1 (t) has the interpretation that the major pattern distinguishing subjects

as distinguishes days within a subject, but increases the difficulty of the estimation problem.

For all simulations we let Ji, the number of days observed per subject, be 4. Once again, one hundred

datasets are constructed for all combinations of sample size I ∈ {50, 100} and number of estimated principal

components K̂(1) = K̂(2) ∈ {2, 5}, giving a total of four possible simulation designs. Model parameters are

estimated using the methodology described in Section 2; we use chains of length 5000, discarding the first

2000 as burn-in.

Table 2 provides the mean (across 100 simulated datasets) IMSE for fixed effects and AIMSE for

latent probability trajectories, as well as mean pointwise coverage and computation time. These results

reiterate the major points found in the cross sectional simulations. In particular, estimation accuracy for

fixed effects improves as sample size increases; estimation of subject effects also improves as sample size

increases, although to a lesser extent than for fixed effects; in all cases, coverage for fixed effects and latent

probability trajectories in near nominal levels; and the coverage of intervals for the latent subject-specific

trajectories µi(t) and latent subject-day-specific trajectories µij(t) increases as K̂ increases. In this setting,

increasing K̂ does not affect estimation accuracy for β1(t) but may negatively affect accuracy for β0(t) due

to the flexibility in the model or because ψ(1)
1 (t) = ψ

(2)
1 (t); meanwhile, increasing K̂ may improve coverage

for both fixed effects. For the multilevel simulations, computation times are larger but not prohibitive,

and generally take between one and four hours.
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IMSE Coverage Comp. Time
β0(t) β1(t) µi(t) µij(t) β0(t) β1(t) µi(t) µij(t) (in sec)

I = 50; ˆK(1) = ˆK(1) = 2 0.0073 0.00027 0.038 0.059 0.941 0.923 0.920 0.934 2893
ˆK(1) = 5 0.0084 0.00026 0.039 0.060 0.946 0.946 0.956 0.968 5938

I = 100; ˆK(1) = ˆK(2) = 2 0.0035 0.00014 0.030 0.050 0.945 0.938 0.934 0.946 6943
ˆK(2) = 5 0.0040 0.00014 0.030 0.051 0.942 0.944 0.959 0.969 12290

Table 2: Multilevel simulation results averaged across 100 datasets. Integrated mean squared errors are
defined as IMSE =

∫ 1
0 (βp(t) − β̂p(t))2 dt for fixed effects and AIMSE = 1

I

∑I
i=1

∫ 1
0 (µi(t) − µ̂i(t))2 dt for

probability curves. Coverage is averaged over 95% pointwise credible intervals. Computation time is
reported in seconds.

4 Application

We now apply methods of Section 2 to the motivating data. For 583 subjects, we observe age, BMI,

and minute-by-minute activity count trajectories for 5 days. For our analysis these activity counts are

dichotomized into “active” and “inactive” by thresholding the observed activity counts at 10. Similar

results are obtained from other thresholds between 0 and 25; this range is fairly conservative for defining

activity in order to allow for low-intensity activity commonly observed in elderly subjects. To reduce the

computational burden of the analysis, data are thinned to one data point for every 10 minutes, giving 144

observations per subject per day. Our model considers age and BMI, centered at 60 and 25 respectively,

as potential predictors of activity and we set K(1) = K(2) = 8. The dimension of the B-spline basis Θ is

KΘ = 10, which suffices to estimate the smooth effects observed in this application. We fit model (3) using

5000 iterations of the sampler, discarding 2000 as burn-in; total computation time was 10 days.
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Figure 2: Estimated fixed effects (red) from the real data analysis with samples from the posterior (black).
The left panel shows the intercept β0(t); the middle panel shows the age effect βAge(t); the right panel
shows the BMI effect βBMI(t).

Figures 2 and 3 provide the estimated fixed effect coefficients. In Figure 2 we show the estimated effect

in red and a posterior sample in black. The intercept β0(t) gives the log odds of activity for 60 year old

12



subject with a BMI of 25, and has an expected circadian rhythm shape. Coefficient functions βage(t) and

βBMI(t) have a log odds ratio interpretation; for example, βage(t) is the change in the log odds of activity

for each one year increase in age, keeping BMI fixed, over a 24-hour time course. From the posterior

distribution, it seems that both age and BMI have significant negative effects on the probability of being

active during daytime hours. The effect of age is most pronounced in the late afternoon, perhaps as a result

of increased fatigue in older subjects, while BMI is most significant in the mid-morning and mid-afternoon.

Figure 3 demonstrates these effects by plotting the fitted probability of being active over a 24-hour period

for several age and BMI levels.
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Figure 3: The left panel shows the effect on the probability of being active of varying age while keeping
BMI fixed. The right panel shows the effect of varying BMI while keeping age fixed. In both panels, the
subject- and subject-day-specific effects are set to zero.

In addition to fixed effects, we estimate level 1 and level 2 principal component basis functions ψ(1)(t)

and ψ(2)(t), which have been rotated to induce orthonormality as described in 2.3. These functions model

the subject- and subject-day-specific residual dependency in the 24-hour trajectories unaccounted for in

the covariate-dependent mean. The top row of Figure 4 shows the directions of variation explained by

the first two level 1 basis functions by plotting g
(
β0(t)±

√
λ

(1)
k ψ

(1)
k (t)

)
, k = 1, 2; the third panel shows

the scree plot for the level 1 decomposition. The major directions that distinguish subjects are a general

shift in the probability of being active and a contrast in the probability of being active in the daytime

and non-daytime hours. Similar plots are shown for the level 2 decomposition in the second row of Figure

4. Although these figures show the basis functions using the probability of activity, the percent variance

explained is calculated and the orthonormality property enforced in the log odds of activity scale. The

proportion of residual (after removing fixed effects) variance explained by subject level effects, given byPK(1)

k=1 λ
(1)
kPK(1)

k=1 λ
(1)
k +

PK(2)

k=1 λ
(2)
k

is 0.46 in this application, indicating moderate stability within subjects over multiple

days.

Finally, we compare fitted values and observed data in Figure 5. The top row contains plots for a 85
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Figure 4: Estimated MFPCA basis functions and scree plots for subject-level and subject-day-level effects

(top and bottom row, respectively). Basis functions are illustrated by plotting g
(
β0(t)±

√
λ

(L)
k ψ

(L)
k (t)

)
for basis functions k ∈ {1, 2} and levels L ∈ {1, 2}.

year old subject with a BMI of 26.5. The left and middle panels show observed data for two different

days as blue dots and a moving average of the observed data as a green trajectories. Subject-day-specific

estimates, combining fixed effects with level 1 and level 2 FPC effects, are overlayed: the posterior mean

Ŷij(t) is shown as a red curve and a posterior sample is shown in black. The right panel shows the moving

average trajectory for each of the five observed days as separate green curves. Subject-specific estimates,

combining fixed effects with only level 1 FPC effects, are again overlayed with the posterior mean Ŷi(t)

in red and a posterior sample in black. Data for a second subject, aged 51 years with a BMI of 23.8,

is shown in the bottom row of Figure 5. Our method accurately captures both large scale patterns and

detailed phenomena, giving accurate estimates of the probability of being active over a 24-hour period

using relatively few principal components and scores.

5 Concluding remarks

The generalized multilevel function-on-scalar regression and principal components analysis techniques de-

veloped in this manuscript are necessary tools in modern functional data analysis and are required by

14



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
(a
ct
iv
e)

0:00 6:00 12:00 18:00 24:00

Obs Data
Binned Mean
Post. Mean
Post. Sample

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
(a
ct
iv
e)

0:00 6:00 12:00 18:00 24:00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
(a
ct
iv
e)

0:00 6:00 12:00 18:00 24:00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
(a
ct
iv
e)

0:00 6:00 12:00 18:00 24:00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
(a
ct
iv
e)

0:00 6:00 12:00 18:00 24:00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
(a
ct
iv
e)

0:00 6:00 12:00 18:00 24:00

Figure 5: Fitted values for two subjects, separately by row. In each row, the left and middle panels show
observed binary values Yij(t) as blue dots (separate days are shown in each panel). A moving average
of the observed data is shown in green. Estimates of subject-day-specific probability trajectories µ̂ij(t)
are shown in red, and a sample from the posterior of µij(t) is shown in black. In the right panel of each
row, moving averages for each observed day of the subject are shown in green, estimates of subject-specific
probability trajectories µ̂i(t) are shown in red, and a sample from the posterior of µi(t) is shown in black.

our application. From a methodological perspective, this work has two major motivations that have often

been neglected in functional data analysis. For the problem of function-on-scalar regression, some effort

is needed to account for residual correlation within functions to develop reasonable inferential procedures.

Meanwhile, in functional principal components analyses, it is common to condition (implicitly or explicitly)

on the estimated mean and basis functions when predicting latent subject-specific trajectories and con-

structing related confidence/credible intervals. Both of these issues are made more difficult in the context

of generalized and multilevel functional data. Our approach has been to jointly model all parameters of

interest in a Bayesian context, and in doing so we have attempted to develop a unified framework for both

function-on-scalar regression and functional principal components analysis.

In the motivating real-data analysis, we quantify and confirm a scientifically plausible expectation: that

the probability of activity decreases as individuals age and as BMI increases, and these effects are dynamic

over the course of the day. Moreover, we identify the major patterns of activity that distinguish subjects

from each other and that distinguish days within subjects. By focusing on a binary activity variable we
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address a concern that is distinct from the intensity of activity, instead examining changes in sedentary

behavior in response to changes in covariates. Of course, an analysis of the changes in activity intensity is

also warranted, as is the consideration of other potentially important covariates the allowing for non-linear

effects.

The Bayesian procedure we develop was shown in realistic simulations to have good estimation and

inferential properties. Not surprisingly, computation time can be a serious concern particularly as sample

sizes, grid densities, and the number of estimated principal component basis functions grow. Future work

focusing on variational Bayes or other approximations could address these concerns and, we suspect, would

result in good estimation; however, the decrease in computational burden may be accompanied by poorer

inferential performance due to the assumptions needed for such an approximation. Balancing these will

depend on the particular data scenario, and both will be important.

6 Acknowledgments

We thank Luigi Ferrucci, Principal Investigator of the Baltimore Longitudinal Study on Aging, for encour-

aging the use of the BLSA accelerometer data that motivated this work and for his scientific insight and

guidance.

References

Atkinson, H. H., Rosano, C., Simonsick, E. M., Williamson, J. D., Davis, C., Ambrosius, W. T., Rapp,
S. R., Cesari, M., Newman, A. B., Harris, T. B., Rubin, S. M., Yaffe, K., Satterfield, S., and Kritchevsky,
S. B. “Cognitive function, gait speed decline, and comorbidities: the health, aging and body composition
study.” The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 62:844–850
(2007).

Baladandayuthapani, V., Mallick, B., Young Hong, M., Lupton, J., Turner, N., and Carroll, R. J. “Bayesian
Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis.”
Biometrics, 64:64–73 (2007).

Bishop, C. M. “Bayesian PCA.” Advances in neural information processing systems, 382–388 (1999).

Brumback, B. and Rice, J. “Smoothing spline models for the analysis of nested and crossed samples of
curves.” Journal of the American Statistical Association, 93:961–976 (1998).

Cardot, H. “Conditional functional principal components analysis.” Scandinavian journal of statistics,
34:317–335 (2007).

Crainiceanu, C. M., Ruppert, D., and Wand, M. P. “Bayesian analysis for penalized spline regression using
WinBUGS.” Journal of statistical software, 14:165–185 (2005).

16



Di, C.-Z., Crainiceanu, C. M., Caffo, B. S., and Punjabi, N. M. “Multilevel Functional Principal Component
Analysis.” Annals of Applied Statistics, 4:458–488 (2009).

Eilers, P. H. C. and Marx, B. D. “Flexible smoothing with B-splines and penalties.” Statistical Science,
11:89–121 (1996).

Geman, S. and Geman, D. “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images.” Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):721–741 (1984).

Goldsmith, J., Greven, S., and Crainiceanu, C. M. “Corrected Confidence Bands for Functional Data using
Principal Components.” Biometrics, 69:41–51 (2013).

Goldsmith, J. and Kitago, T. “Assessing Systematic Effects of Stroke on Motor Control using Hierarchical
Function-on-Scalar Regression.” Technical Report (2013).

Guo, W. “Functional mixed effects models.” Biometrics, 58:121–128 (2002).

Hall, P., Müller, H.-G., and Wang, J. L. “Properties of Principal Component Methods for Functional and
Longitudinal Data Analysis.” Annals of Statistics, 34:1493–1517 (2006).

Hoffman, M. D. and Gelman, A. “The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian
Monte Carlo.” arXiv preprint arXiv:1111.4246 (2011).

Howell, J., Strong, M., Weisenberg, J., Kakade, A., Gao, Q., Cuddihy, P., Delisle, S., Kachnowski, S., and
Maurer, M. “Maximum Daily 6 Minutes of Activity: An Index of Functional Capacity Derived from
Actigraphy and Its Application to Older Adults with Heart Failure.” Journal of the American Geriatric
Society, 58:931–936 (2010).

Jiang, C.-R. and Wang, J.-L. “Covariate adjusted functional principal components analysis for longitudinal
data.” The Annals of Statistics, 38:1194–1226 (2010).

Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. “The BUGS project: Evolution, critique and future
directions (with discussion).” Statistics in Medicine, 28:3049–3082 (2009).

Morris, J. S., Baladandayuthapani, V., Herrick, R. C., Sanna, P., and Gutstein, H. “Automated analysis
of quantitative image data using isomorphic functional mixed models, with application to proteomics
data.” Annals of Applied Statistics, 5:894–923 (2011).

Morris, J. S. and Carroll, R. J. “Wavelet-based functional mixed models.” Journal of the Royal Statistical
Society: Series B, 68:179–199 (2006).

Neal, R. “MCMC Using Hamiltonian Dynamics.” Handbook of Markov Chain Monte Carlo, Chapter 5,
113–162 (2011).

Plummer, M. “JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling.” In
Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). March,
20–22 (2003).

17



R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria (2009). ISBN 3-900051-07-0.
URL http://www.R-project.org

Ramsay, J. O. and Silverman, B. W. Functional Data Analysis. New York: Springer (2005).

Reiss, P. T. and Huang, L. “Fast Function-on-Scalar Regression with Penalized Basis Expansions.”
International Journal of Biostatistics, 6:Article 28 (2010).

Rundle, A., Goldstein, I. F., Mellins, R. B., Ashby-Thompson, M., Hoepner, L., and Jacobson, J. S.
“Physical activity and asthma symptoms among New York City Head Start children.” Journal of Asthma,
46:803–809 (2009).

Ruppert, D., Wand, M. P., and Carroll, R. J. Semiparametric Regression. Cambridge: Cambridge Uni-
versity Press (2003).

Schein, A. I., Saul, L. H., and Ungar, A. “A generalised linear model for principal component analysis of
binary data.” In Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics
(2003).

Scheipl, F., Staicu, A.-M., and Greven, S. “Additive Mixed Models for Correlated Functional Data.” Under
Review (2013).

Schrack, J. A., Zipunnikov, V., Goldsmith, J., Bai, J., Simonshick, E. M., Crainiceanu, C. M., and Ferrucci,
L. “Assessing the “Physical Cliff”: Detailed Quantification of Aging and Physical Activity.” Journal of
Gerontology: Medical Sciences (2014).

Shiroma, E. J., Freedson, P. S., Trost, S. G., and Lee, I. M. “Patterns of accelerometer-assessed sedentary
behavior in older women.” Journal of the American Medical Association, 310:2562–2563 (2013).

Spierer, D. K., Hagins, M., Rundle, A., and E, P. “A comparison of energy expenditure estimates from the
Actiheart and Actical physical activity monitors during low intensity activities, walking, and jogging.”
European Journal of Applied Physiology, 111:659–667 (2011).

Stan Development Team. Stan Modeling Language User’s Guide and Reference Manual, Version 1.3 (2013).
URL http://mc-stan.org/

Tipping, M. E. and Bishop, C. “Probabilistic Principal Component Analysis.” Journal of the Royal
Statistical Society: Series B, 61:611–622 (1999).

Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., and McDowell, M. “Physical activity
in the United States measured by accelerometer.” Medicine & Science in Sports & Exercise, 40:181–188
(2008).

Trost, S. G., McIver, K. L., and Pate, R. R. “Conducting accelerometer-based activity assessments in
field-based research.” Medicine and Science in Sports and Exercise, 37:S531–543 (2005).

van der Linde, A. “Variational Bayesian Functional PCA.” Computational Statistics and Data Analysis,
53:517–533 (2008).

18

http://www.R-project.org
http://mc-stan.org/


—. “A Bayesian latent variable approach to functional principal components analysis with binary and
count.” Advances in Statistical Analysis, 93:307–333 (2009).
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