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Real-time influenza forecasts during the
2012–2013 season
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Recently, we developed a seasonal influenza prediction system that uses an advanced

data assimilation technique and real-time estimates of influenza incidence to optimize and

initialize a population-based mathematical model of influenza transmission dynamics. This

system was used to generate and evaluate retrospective forecasts of influenza peak timing in

New York City. Here we present weekly forecasts of seasonal influenza developed and run in

real time for 108 cities in the USA during the recent 2012–2013 season. Reliable ensemble

forecasts of influenza outbreak peak timing with leads of up to 9 weeks were produced.

Forecast accuracy increased as the season progressed, and the forecasts significantly

outperformed alternate, analogue prediction methods. By week 52, prior to peak for the

majority of cities, 63% of all ensemble forecasts were accurate. To our knowledge, this is

the first time predictions of seasonal influenza have been made in real time and with

demonstrated accuracy.
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I
nfluenza is associated with the deaths of 3,000–49,000 people
each year in the USA1 and presents an enormous burden on
worldwide public health2. In temperate regions, pronounced

outbreaks of influenza typically occur during winter. This
recognized timing allows public health agencies to organize
their influenza-related mitigation and response activities in
preparation for the winter influenza season. For example,
vaccines can be administered each fall in advance of expected
increased winter incidence, and influenza antivirals can be
stockpiled to meet high wintertime demand.

While the general wintertime peak of influenza incidence in
temperate regions is well described and predictable, the specific
timing, magnitude and duration of individual local outbreaks in
any given year are highly variable. Even after an outbreak has
begun, it remains difficult to predict the future characteristics of
the epidemic curve. If those outbreak characteristics were to be
reliably forecast, public health response efforts could be better
coordinated. Indeed, accurate forecast of the intensity and timing
of infectious disease outbreaks discriminated among cities or
regions within a country would provide greater lead time for
preferential focus of mitigation and response resources to areas
with more urgent need.

In a recent study we showed that accurate and reliable
predictions of seasonal influenza outbreaks can be made using a
mathematical model representing population-level influenza
transmission dynamics, which has been recursively optimized
using an ensemble data assimilation technique and real-time
estimates of influenza incidence3. This initial influenza forecast
system was constructed and validated with a simple susceptible-
infected-recovered-susceptible (SIRS) model4. In addition to
the intrinsic effects of population level susceptibility on
influenza transmission rates, influenza transmission in the
model population is also modulated by observed daily absolute
humidity (AH) conditions, as this meteorological condition has
been shown to affect the survival and transmission of influenza5.
Most relevant to this application, the SIRS model simulates the
number of people in a local population infected with influenza at
any point in time over the course of an outbreak.

The SIRS model is described by two coupled equations,
consisting of model state variables and parameters (See Methods).
As the model is integrated forward in time, the state variables
represent the number of infected and susceptible people within
the simulated population. Model parameters describe additional
intrinsic characteristics of both the host population and the virus.

To perform a forecast, a 200-member ensemble of SIRS model
simulations is numerically integrated for a given location (for
example, New York City) and influenza season. Each ensemble
simulation is initialized with a different randomly drawn suite of
SIRS model state variables and parameters. Weekly local
estimates of influenza incidence are then assimilated into these
simulations using a data assimilation technique called the
ensemble adjustment Kalman filter (EAKF)6. The EAKF is used
to iteratively adjust both observable and unobservable state
variables (that is, the number of newly infected and susceptible
people, respectively), as well as the parameters of the SIRS model.
These adjustments not only directly modify model estimates of
infected and susceptible people in the simulated population, but
also improve the ability of the model to replicate the future
unfolding trajectory of a local outbreak by adjusting the model
parameters. Parameter estimation is an important feature of the
forecast system, as it allows the SIRS model to flexibly simulate
outbreaks with very different characteristics.

The process of informing the model with observations can be
thought of as a ‘training’ period prior to an actual forecast. The
assimilation of observations up to the time of forecast essentially
optimizes the future behaviour of the ensemble to better match

the evolving dynamics of the local seasonal outbreak. Actual
weekly forecasts are then generated by integrating the ensemble of
simulations into the future beyond the latest observation.

A variety of quantities describing the epidemic curve can be
forecast and evaluated (for example, peak timing, total outbreak
cases). In prior work, we focused on the prediction of peak
timing. For retrospective forecasts generated for New York City,
we found a relationship between the spread of ensemble
predictions of this metric and the accuracy of those predictions3.
Indeed, forecast accuracy tended to improve as the spread of the
ensemble decreased. The strength of this relationship is an
important outcome, as it suggests that confidence in a particular
forecast is inferable from the forecast ensemble variance.

Those previous forecasts for New York City were generated
using the humidity-forced SIRS model, Google Flu Trends (GFT)
estimates of influenza-like illness (ILI)7,8 and the EAKF. Here we
present real-time forecasts of influenza incidence throughout the
USA generated for the 2012–2013 season using a similar
prediction system, but with a modified observational estimate
of influenza incidence. Recent analysis indicates that scaling an
ILI metric by the proportion of ILI patients testing positive for
influenza can provide a more specific metric of influenza activity
than ILI alone9. In near-real time, weekly estimates of the
influenza-positive proportion of patients presenting with ILI are
available for the USA by region10. For this work, we use such a
combined metric, termed ILIþ , in which municipal weekly GFT
ILI estimates are multiplied by US Centers for Disease Control
and Prevention (CDC) census division influenza positive
proportions (see Methods). Indeed, ILIþ outbreaks tend to
begin later in the season than ILI, which contains early fall signal
that often reflects outbreaks of other respiratory infectious agents
such as rhinovirus, rather than influenza activity11.

Using the SIRS-EAKF framework and ILIþ observations,
weekly real-time ensemble predictions of influenza epidemic
progression were made for 108 cities throughout the USA during
the 2012–2013 season. Here we show that these real-time
forecasts accurately predicted local outbreak peaks up to 9 weeks
in advance and that the expected accuracy of these ensemble
predictions was inferable from the spread of the ensemble.
Furthermore, we show that the SIRS-EAKF forecasts were
substantially more accurate than alternate, analogue predictions.
The findings indicate that accurate, calibrated real-time forecast
of influenza outcomes can be generated with a simple dynamical
model that has been optimized using real-time observations of
influenza incidence and data assimilation methods.

Results
Retrospective calibration of 2012–2013 predictions. Our
calibration of the real-time influenza predictions over the USA
during the 2012–2013 season is based on retrospective forecasts
for the 2003–2004 through 2011–2012 seasons for 115 cities in
the USA (see Methods). All retrospective ensemble simulations
were trained each week to the point of forecast using scaled ILIþ
observations and the EAKF. The 2008–2009 and 2009–2010
seasons, which included pandemic H1N1 outbreaks, were omitted
from the analysis to restrict focus to the prediction of seasonal
influenza.

An analysis of peak timing forecast performance was carried
out for all municipalities within a census division region, all
cities in aggregate and individual municipalities (Fig. 1 and
Supplementary Fig. S1). Forecasts for which the ensemble
predicted mode outbreak peak is 1–3 and 4–6 weeks in the
future show a strong relationship of increasing accuracy with
decreasing ensemble spread in most regions. This relationship
allows us to quantify the expected accuracy of a predicted
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outcome based on the variance of the forecast ensemble. Only the
New England census division, which contains only 3 of the 115
retrospective forecast cities, has no relationship at either of these
lead times. The 7–9 week and 10þ week lead forecasts do not
show a consistent relationship between spread and accuracy;
however, the Mid-Atlantic, South Atlantic, East North Central
and West North Central census divisions exhibit increasing
forecast accuracy with decreasing ensemble spread.

When the retrospective forecasts are aggregated for all 115
cities, a smoother relationship emerges (Fig. 1b). Lead forecasts all
exhibit increasing accuracy with decreasing ensemble variance,
and forecasts for which the peak is predicted to have already
occurred are accurate over a broad range of ensemble variances.
Again, the emergence of a relationship between ensemble
variance and forecast accuracy in the retrospective forecasts
provides critical information for the interpretation of real-time
forecasts and establishes a basis for determining whether the
prediction system is well calibrated. If well calibrated, future
events would occur in reality with the same probability as forecast
by the system.

Examination of the retrospective forecasts of peak timing for
select major cities reveals considerable variability. Chicago is

characterized by a strong relationship between prediction
accuracy and ensemble variance at all forecast lead times, whereas
Seattle is not (Supplementary Fig. S1). New York City, which
previously demonstrated a similar relationship of increasing
prediction accuracy with decreasing ensemble variance for
retrospective forecasts using GFT ILI estimates only3, here,
when using ILIþ with the scaling used in this study (see
Methods), does not exhibit this same relationship; however, at the
Mid-Atlantic census division level such a relationship is broadly
evident. Whether this variability among cities is a function of the
limited number of years, the data type, the appropriateness of the
model form, the scaling of the ILIþ estimates or the assimilation
method is not currently understood. Ongoing evaluation of these
issues will take place as the system is further developed. In the
present, as the spatial scale at which information should be
aggregated is to be yet determined, we present forecast results at
municipal, regional and national scales.

Forecast accuracy during the 2012–2013 season. During the
2012–2013 USA influenza season, ILIþ observations and the
EAKF were used to train the SIRS model, which was then used to
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Figure 1 | Calibration of forecast accuracy as a function of ensemble spread. Retrospective forecasts of outbreak peak timing initiated for each of the

2003–2004 through 2011–2012 seasons, excluding the pandemic seasons of 2008–2009 and 2009–2010. Retrospective forecasts were made for

115 cities, which were then aggregated by census division or nationally. Plots present the probability that an ensemble predicted mode peak timing is

accurate within ±1 week of the observed ILIþ peak as a function of ensemble predicted peak timing variance log transformed. (a) Training and forecast

made using climatological AH, census division aggregation; (b) as in (a), but aggregated nationally. The coloured lines are for ensemble mode peak

predictions 10þ weeks in the future (magenta), 7–9 weeks in the future (blue), 4–6 weeks in the future (cyan), 1–3 weeks in the future (red), 0–2 weeks in

the past (green) and 3–5 weeks in the past (black).
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create local near real-time forecasts of influenza activity for 108
municipalities (Supplementary Table S1). Forecasts were gener-
ated each week upon release of the latest CDC census division
influenza positive proportions. New CDC weekly data were
initially released 6 days following the end of the most recently
completed week (that is, near real time), and forecasts were
produced the same day. For example, the week 51 forecasts were
produced on 28 December 2012, included assimilation of week 51
ILIþ estimates (that is, through 22 December 2012), and were
run in forecast mode from 23 December 2012 onward. A 1-week
lead prediction for this forecast implies predicted local influenza
incidence peak during week 52 (23–29 December 2012).

The accuracy of weekly ensemble mode predictions generated
for individual cities was mixed (Table 1 and Supplementary

Table S2). Some municipalities, for example, Birmingham, AL,
Kansas City, MO, Buffalo, NY, were accurately forecast through-
out the influenza season, both before and after the observed local
peak had passed. Outbreak peaks in other cities, such as Phoenix,
AZ, Chicago, IL and New Orleans, LA, were never well predicted.
Many cities showed increasing accuracy of prediction as the
season progressed, for example, San Diego, CA, Atlanta, GA and
Boston, MA. Overall forecast accuracy increased from 19 to 74%
as the season progressed and more observations were entrained
into the evolving model (Table 1 and Supplementary Table S2).
By week 52, 63% of all ensemble forecasts of mode peak week
were accurate within 1 week.

The accuracy of these forecasts far exceeded the accuracy of
predictions derived from the resampling of historical outcomes,

Table 1 | Accuracy of weekly municipal forecasts.

Percent ensemble mode predictions accurate within 1 week (sorted by when the forecast was made)Date of forecast

30 Nov
2012

7 Dec
2012

14 Dec
2012

21 Dec
2012

28 Dec
2012

4 Jan
2013

11 Jan
2013

18 Jan
2013

25 Jan
2013

1 Feb
2013

8 Feb
2013

15 Feb
2013

Most recently assimilated
ILIþ data week

47 48 49 50 51 52 1 2 3 4 5 6

City Observed
peak ILIþ

week

Birmingham, AL 50 100 100 100 100 100 100 100 100 100 100 100 100
Phoenix, AZ 4 0 0 0 0 0 0 0 0 0 0 0 0
Los Angeles, CA 4 0 0 0 0 35 79 100 100 100 100 100 100
San Diego, CA 4 0 0 1 51 95 99 100 100 100 100 100 100
San Francisco, CA 4 0 0 0 0 61 97 100 100 100 100 100 100
Denver, CO 3 0 0 0 7 32 73 100 100 100 100 100 100
Washington, DC 2 0 0 0 1 22 72 4 7 48 45 43 43
Miami, FL 2 0 0 2 85 94 22 0 51 26 98 100 100
Orlando, FL 3 0 0 0 0 33 100 100 100 100 100 100 100
Atlanta, GA 52 32 28 45 99 81 99 100 100 100 100 100 100
Des Moines, IA 2 21 3 100 100 100 100 93 100 100 100 100 100
Boise, ID 2 15 2 100 100 100 100 100 100 100 100 100 100
Chicago, IL 1 0 0 0 0 0 0 0 0 0 0 0 0
Indianapolis, IN 2 0 0 0 0 0 0 0 0 0 0 0 0
New Orleans, LA 3 0 0 0 0 0 0 0 0 0 0 0 0
Boston, MA 2 29 77 65 100 100 100 100 100 100 100 100 100
Baltimore, MD 3 0 0 0 0 0 0 38 17 34 75 61 67
Kansas City, MO 1 100 100 100 100 100 100 100 100 100 100 100 100
St. Louis, MO 2 0 0 0 0 27 10 1 11 3 17 7 3
Charlotte, NC 52 100 100 98 100 94 100 100 100 100 100 100 100
Las Vegas, NV 4 0 0 0 0 0 0 0 0 0 0 1 2
New York, NY 1 86 100 100 100 100 100 100 100 100 100 100 100
Cincinnati, OH 2 0 0 0 0 0 0 39 46 49 52 52 46
Cleveland, OH 1 33 99 68 100 100 100 100 100 100 100 100 100
Portland, OR 4 0 0 9 72 100 100 100 100 100 100 100 100
Philadelphia, PA 2 85 86 51 100 100 100 100 100 100 100 100 100
Providence, RI 2 42 91 100 100 100 100 0 100 100 100 100 100
Nashville, TN 52 15 57 100 100 100 100 100 100 100 100 100 100
Dallas, TX 3 0 0 0 0 0 0 0 0 0 0 0 0
Houston, TX 3 0 0 0 0 0 0 0 0 0 0 0 0
Salt Lake City, UT 3 0 6 95 100 100 100 100 90 100 100 100 100
Seattle, WA 4 0 0 1 26 65 75 99 100 100 100 100 100
Milwaukee, WI 2 0 0 0 0 0 0 3 2 2 3 1 1

Total percent
Accurate
(all 108 cities)

18.5 23.0 32.0 47.3 56.7 63.1 63.8 66.3 70.6 72.8 73.9 73.3

Bootstrap 1 *** *** *** *** *** *** *** *** *** *** *** ***
Bootstrap 2 * ** *** *** *** *** *** *** *** *** *** ***
Bootstrap 3
(onset 500 ILIþ )

*** *** *** *** *** *** *** *** *** *** *** ***

Percent of the 150 ensemble forecasts issued for select major cities from week 47 (2012) to week 6 (2013) of the 2012–2013 influenza season for which the ensemble mode predicted peak week was
within 1 week of the eventual observed ILIþ peak. The observed ILIþ peak is also presented. A complete list of predictions for all cities is given in Supplementary Table S2.
*Po0.05; **Po0.01; ***Po0.0002, per bootstrapped tests of significance described in the Supplementary Methods.
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including conditional resampling constrained by the current state
(Fig. 2, Supplementary Methods, Supplementary Table S3). By
week 49, all weekly SIRS-EAKF predictions were significantly
more accurate than these resampled predictions. At week 52, the
SIRS-EAKF forecasts produced nearly twice as many accurate
predictions as the best resampled forecast. In addition, the 2012–
2013 real-time SIRS-EAKF forecasts accurately discriminated
peak timing among the 108 cities forecast (Supplementary
Methods, Supplementary Fig. S2). That is, repeated random
comparison of each city’s forecast with observations from a
different city proved less accurate than with observations from
the same city. SIRS-EAKF forecast discrimination of peak timing
among cities was statistically significant (Po0.05, based on
bootstrapped confidence intervals) from week 50 onward.

Expected forecast accuracy for the 2012–2013 season. The
preceding validations demonstrate that the 2012–2013 predic-
tions greatly outperformed predictions derived from historically
inferred probabilities. However, these comparisons treat all SIRS-
EAKF ensemble predictions as equal, when in fact each real-time
ensemble prediction has an associated expected accuracy (for

example, a 70% probability that influenza will peak in 5 weeks),
which is inferred from the ensemble distribution of predicted
outcomes (Supplementary Fig. S3) and retrospective prediction
accuracy (Fig. 1 and Supplementary Fig. S1). In general, predic-
tions for which there is greater spread among ensemble members
have a lower expected accuracy than those with narrower dis-
tributions. Depending on whether this inference is based on
retrospective forecasts aggregated at the national, regional or
municipal, the expected accuracy of each prediction varies.

Results from near real-time forecasts made for the 2012–2013
US influenza season during week 47 of 2012 through week 8 of
2013 indicate that the forecasts across all 108 cities were
reasonably well matched with retrospectively calibrated con-
fidences at the national scale (Fig. 3). Specifically, forecasts
predicting a local outbreak peak in 4–6 weeks, match historically
expected accuracies, that is, predictions of peak timing 5 weeks in
the future with a log ensemble variance of 2, were accurate B50%
of the time, which is slightly better than historical expectance.
Predictions with a 1–3-week lead were weaker than expected for
log ensemble variances 41.5 and o0.25, but better than expected
between 0.5 and 1.5. The 7–9 week lead predictions greatly
outperformed historical expectance.
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Figure 2 | Accuracy of 2012–2013 real-time forecasts. Plots comparing

the weekly fraction of accurate SIRS-EAKF forecasts with the accuracy of

analogue forecasts derived from historical probabilities (see Supplementary

Methods). Top: weekly SIRS-EAKF forecast accuracy and resampled

predictions using two alternate resampling approaches. Bottom: weekly

SIRS-EAKF forecast accuracy and resampled analogue predictions based on

historically observed durations between initially elevated ILIþ and peak

ILIþ . Only cities that have exceeded an onset, or initial threshold, level of

elevated ILIþ are included in the analogue forecast for a given week. Three

different onset thresholds are shown as follows: 100, 500 and 2,000 ILIþ .

For all the analogue forecasts, the thick line depicts the mean fraction of

accurate forecasts while the shading and thin lines delineate 95% bootstrap

confidence intervals.
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Figure 3 | Expected accuracy of peak timing forecasts for the 2012–2013

season. Week 47 (2012) through week 48 (2013) forecasts were made for

108 cities, which were then aggregated nationally. Plots present the

probability that an ensemble predicted mode peak timing is accurate within
±1 week of the observed ILIþ peak as a function of ensemble predicted

peak timing variance log transformed. The blue lines are the 2012–2013

predictions grouped by forecast lead; the red lines are the expected

accuracy based on the retrospective forecasts also aggregated nationally

(as shown in Fig. 1b).
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On the other hand, predictions that the peak had passed mostly
underperformed nationally scaled expectance. Too many fore-
casts were generated indicating the peak had passed only to
witness observed ILIþ continue to rise. We believe this
underperformance stems in part from the intense media attention
accorded the influenza outbreak during 2012–2013 in the USA,
which seems to have inflated GFT ILI estimates during January
and prolonged a number of local outbreaks that in reality likely
peaked in late December12.

When the predictions are grouped by census division region
and compared by lead time and ensemble spread to expected
accuracies the results are more mixed (Supplementary Fig. S4).
The accuracy of 2012–2013 predictions was similar to regional
historical expectance for some lead times and regions, for
example, the West South Central, Mountain and Pacific census
division regions with a 4–6 week lead, but most other groupings
diverged from expectance.

Similar examination of individual city forecast accuracy versus
expected accuracy reveals very mixed results (Supplementary
Fig. S5). The 1–3 week lead predictions for Chicago, Dallas,
Houston, Memphis and St Louis were not accurate, nor in line
with accuracy as expected at the municipal, regional or national
scale. Conversely, the 1–3 week peak timing predictions for Los
Angeles, San Francisco, and Seattle outperformed municipal,
regional and national expected accuracies at low ensemble spread,
for Miami outperformed regional and national expected accura-
cies at all ensemble spreads, and for New York City outperformed
all expected accuracies for all ensemble spreads. Clearly, the New
York City municipally calibrated accuracy, which performed
poorly in retrospective prediction (Supplementary Fig. S1), did
not provide a reliable estimate of forecast accuracy expectance
during 2012–2013.

These findings indicate that nationally aggregate retrospective
forecast accuracy provided a better estimate of expected accuracy
of the real-time forecasts across the USA than regional and
municipal expected accuracies. We can thus use real-time forecast
ensemble variance to discriminate more reliable municipal
predictions (for example, 90% expected accuracy) from less
reliable municipal predictions (for example, 20% expected
accuracy) using nationally aggregated expected accuracy.

Challenges due to elevated ILIþ levels during 2012–2013.
During the 2012–2013 US influenza season, ILIþ in most of the
108 forecast cities peaked during weeks 2–4 (Supplementary
Fig. S6). These late-peaking cities, perhaps due to a longer period
for ILIþ training prior to the peak, tended to be better predicted
than cities that peaked earlier (Supplementary Fig. S6B,
Supplementary Table S4). A number of the cities that were
forecast poorly had observed, seasonal cumulative ILIþ that,
when scaled to reflect the total number of people infected within
the SIRS model, neared or even exceeded the total population
(Supplementary Fig. S7). Indeed, with the scaling presented here
(g¼ 2.5, see Methods), 17 of the 108 forecast cities experienced
total ILIþ , that is, week 40 (2012) to week 12 (2013) summed
weekly incidence, in excess of the model population
(N¼ 100,000). These aggregate incidence levels were unprece-
dented. During the seven retrospectively forecast seasons, across
all cities and with identical g scaling, seasonal total ILIþ never
exceeded 70,000, whereas during 2012–2013, 60 of 108 cities
exceeded this threshold.

The 2012–2013 elevated ILIþ levels were a product of bias in
GFT ILI relative to CDC ILI, possibly brought about by intense
media coverage of the USA influenza outbreak, as well as the
virulence of some of the circulating influenza strains, which likely
prompted a higher percentage of infected persons to seek medical
attention than in most previous years12 (see Methods). Even with

continual state variable and parameter adjustment via the EAKF,
the SIRS model, as formulated for a single influenza strain, is not
equipped to depict an outbreak near or in excess of its total
population (Supplementary Fig. S8). Indeed, 2012–2013 real-time
forecast accuracy was negatively correlated with seasonal total
ILIþ (for example, correlation of week 1 municipal forecast
accuracy with seasonal total ILIþ : r¼ � 0.30, P¼ 0.0019, two-
sided t-test).

These findings suggest that forecast accuracy during the 2012–
2013 season was undermined by higher than normal values of
scaled ILIþ . Examination of forecast time series (Supplementary
Fig. S8) indicates that predictions for cities with high total ILIþ
generally under-represented outbreak magnitude. While such
performance is sub-optimal, it is encouraging as it suggests that
peak timing forecast accuracy might have been still better in the
absence of these unusual biases. Furthermore, a number of
potential remedies exist for handling such biases in the future (see
Supplementary Note 1).

Sensitivity to different observational estimates of incidence.
During January of the 2012–2013 season, GFT ILI estimates
considerably overestimated target CDC reported ILI12. As long as
the same data source is used both to train and validate the SIRS-
EAKF forecasts, and as long as within-season changes in data bias
are not too extreme, the ensemble forecasts should perform well.
However, due to the January increase of GFT ILI bias, the forecast
validation metric, ILIþ peak timing, may not represent reality
well. Obviously, to best inform public health, we would prefer an
observational estimate of weekly influenza infections that
represents actual incidence as accurately as possible.

CDC ILI estimates are not made publicly available at the
municipal scale; however, they are available in near real time at
aggregate national and regional levels, and both GFT ILI and
CDC ILI estimates are provided in near real time at the Health
and Human Service (HHS) region scale. We therefore ran
regional-scale comparison forecasts using HHS GFT ILIþ and
HHS CDC ILIþ estimates (see Supplementary Methods). Owing
to the large geographic scale of each region, the SIRS model was
run without AH-forced modulation of transmissibility; instead,
R0 was treated as a free parameter to be optimized by the EAKF
assimilation process.

HHS CDC ILIþ peaked during week 52 of the 2012–2013
season for all divisions except the HHS Region 9, which peaked
during week 4 (Fig. 4). In contrast HHS region GFT ILIþ
estimates peaked during week 1 (HHS Region 5), week 2 (HHS
Regions 1–4), week 3 (HHS Regions 6–8) and week 4 (HHS
Regions 9–10). The weekly total accuracy of HHS-region CDC
ILIþ forecasts ranged from a low of 59.5% (week 52) to a high of
90% (week 5). Overall, accuracy is greater for the HHS-region
CDC ILIþ forecasts than the HHS-region GFT ILIþ , which
degraded in forecast quality as the season progressed from a high
total accuracy of 85.2% (week 48) to a low of 46.7% (week 4). This
degradation of HHS GFT ILIþ forecast accuracy coincides with
the January increase of GFT ILI bias relative to CDC ILI. On
average during weeks 1–5 of 2013, HHS-region GFT ILIþ was
2.20 times HHS-region CDC ILIþ .

While the HHS-region CDC ILIþ forecasts are more accurate,
the HHS-region GFT ILIþ peak timing forecasts are still quite
reliable. That is, real-time municipal GFT ILIþ forecast accuracy
was not an artifact of GFT ILI biases (that is, even though the target
is wrong, the SIRS-EAKF framework is trained for that target and
predicts it well). The HHS findings also suggest that were CDC ILI
estimates at the municipal scale available, our city forecasts (Fig. 2)
might have been more accurate. In addition, the results indicate that
reliable influenza forecasts can be made without AH modulation of
transmissibility. That is, local, non-linear transmission dynamics are
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more important for forecast accuracy than AH modulation of
influenza transmissibility. A fuller exploration of these model design
issues and the benefit of including AH in the SIRS model
framework is forthcoming.

Discussion
This study has shown that forecast accuracy with the SIRS-EAKF
system during the 2012–2013 influenza season was far superior to

forecasts generated from resampling historically expected prob-
abilities. This finding indicates that forecasting using a trained
population-based influenza model that represents local non-linear
transmission dynamics is much more informative than simple
analogue expectance. This study has also shown that, when
nationally aggregated, SIRS-EAKF ensemble forecast expected
accuracy could be reliably inferred from the forecast ensemble
spread.

A further, more detailed exploration of the geographic
variability of forecast accuracy and reliability is needed to
determine whether some municipalities or regions are funda-
mentally more predictable. Preliminary analysis shows that for
longer lead times (42 weeks ahead of the observed ILIþ peak),
municipal peak timing forecast accuracy increased as city
population decreased, population density increased, or city area
decreased (Supplementary Table S5, Supplementary Note 2). That
is, longer lead forecasts for smaller populations, higher popula-
tion densities or smaller geographies tended to be more accurate.
This finding suggests that larger municipalities might be better
forecast if broken into smaller geographic units. A fuller
exploration of these issues is needed to verify this preliminary
finding and to define the optimal spatial scales at which influenza
should be forecast. In addition, the characteristics that make an
influenza outbreak more or less predictable—including geo-
graphic area, population size and density, number of circulating
strains, population age, duration of outbreak, number of peaks,
and so on—need to be better identified.

A more detailed evaluation of the timeliness and quality of
real-time influenza incidence observation data forms is also
needed. The latest ILIþ observations are first available 6 days
following the conclusion of a given influenza week. This 6-day lag
delays the production of new weekly predictions, which could be
generated sooner if weekly estimates of influenza positive
proportions10 were reported more quickly. In addition,
forecasts also might benefit from provision of these data at a
finer spatial resolution (for example, municipal- or state level
instead of regional level).

Different forecast models also need to be tested. For example,
during the 2012–2013 season in the USA, four strains of influenza
(A/H3N2 Victoria/361/2011-like, B/Yamagata lineage, B/Victoria
lineage and A/H1N1/California/7/2009-like) were in circulation.
Our use of a single-strain SIRS model for the prediction of
these multiple strain outbreaks is likely a source of bias that may
have reduced the overall accuracy of the forecasts. Indeed, the
SIRS-EAKF parameter estimates often appear slightly high
(Supplementary Fig. S9, Supplementary Note 1), which indicates
that the EAKF may be adjusting state variable and parameter
estimates to compensate for model bias. In the future, we plan to
develop and test forecasts using models that simulate individual
influenza subtypes or strains. In addition, we also plan to
investigate systematically how the form and structure of an
outbreak influences its inherent predictability. Nevertheless, it is
encouraging that a simple SIRS model, which neglects known
aspects of influenza transmission, is already able to produce
accurate, calibrated forecasts.

During the 2012–2013 season, we trained and forecast each of
the 108 forecast municipalities in isolation. In the future, alternate
training and forecasting strategies might be adopted that account
for the spatial co-variability of the parameters that control
transmission dynamics or levels of modelled incidence and
susceptibility.

A number of other predictions should also be explored. Real-
time forecast of additional outbreak metrics, such as attack rate
and peak magnitude, needs to be assessed, and the model
framework might be used to predict the timing of local outbreaks
worldwide during pandemic events. Unlike attempts to describe
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Figure 4 | Weekly predictions of CDC ILIþ and GFT ILIþ peak timing

for HHS regions. Top: the fraction of all SIRS-EAKF forecasts each week

(made using SIRS model without AH modulation of R0); the week 1–6

forecasts were run in near real time; the week 47–52 forecasts were run

using data downloaded following week 1. Middle: plots of observed HHS

CDC ILIþ as reported through week 12, 2013; using this metric, all HHS

peak during week 52, except HHS Region 9, which peaked during week 4.

Bottom: plots of observed HHS GFT ILIþ as reported through week 12,

2013; 9 of the 10 GFT ILIþ HHS regions peak later than their counterpart

CDC ILIþ estimate. From week 40 (2012) through week 12 (2013), HHS

GFT ILIþ was on average 1.61 times corresponding estimates of HHS

CDC ILIþ , and during weeks 1–5 HHS GFT ILIþ was on average 2.20 times

HHS CDC ILIþ .
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the emergence of a pandemic strain13 or the geographic spread of
an emergent strain14–16, these efforts would be used to forecast
the propagation of the pandemic strain through populations once
local outbreaks have begun. Other pathogens such as rhinovirus
or respiratory syncytial virus might also be forecast. In addition,
prediction with alternate combinations of model form17,18, data
type10,11 and assimilation scheme19–21 should be explored.
Ultimately, an ensemble of different model forms, data types
and assimilations each weighted by predictive ability in a given
location may provide superior localized forecast of influenza
activity.

During the 2012–2013 influenza season, the real-time forecasts
were archived for future study12 and disseminated in real time on
a weekly basis to officials at the CDC. At that time, these
predictions were a novel, relatively untested data stream; it was
thus not expected that officials would use the forecasts to inform
their decisions. However, going forward, we must work with
public health officials to increase their familiarity with the
capabilities and limitations of these forecasts, as well as our own
familiarity with the public health intervention and response
decision-making process. By doing so, these forecasts can be
more sensibly presented, interpreted and used in support of
intervention and response decisions such as vaccine allocation,
the distribution of anti-viral therapeutics and school closure.

In the future, the real-time influenza forecasts will also be
posted online. Different lead forecasts will likely have different
practical uses for the broader public. Short-lead predictions (that
is, 0–3 week leads) would likely improve awareness of current
influenza risk, heighten vigilance to infection and increase
attention to personal hygiene; long-lead predictions (that is, Z5
weeks) would provide enough time for vaccine-induced genera-
tion of protective antibodies and thus may motivate more
individuals to get vaccinated. In addition to this broader
dissemination, an ongoing task will be to improve forecast
accuracy and reliability. Just as the performance of weather
forecasting systems has advanced over time, our hope is that the
forecast of influenza and other seasonally recurring respiratory
pathogens will also improve.

Methods
Description of the SIRS model. The model used for this study is a perfectly-
mixed, absolute humidity-driven susceptible-infectious-recovered-susceptible
(SIRS) construct3. This construct is a two-variable non-linear oscillator that
describes the transmission of influenza within a local population. The SIRS model
equations are:

dS
dt
¼ N � S� I

L
� b tð ÞIS

N
� a ð1Þ

dI
dt
¼ b tð ÞIS

N
� I

D
þ a ð2Þ

where S is the number of susceptible people in the population, t is time in years,
N is the population size, I is the number of infectious people, N–S–I is the number
of recovered individuals, b(t) is the contact rate at time t, L is the average duration
of immunity, D is the mean infectious period and a is the rate of travel-related
import of influenza virus into the model domain.

The contact rate, b(t), is determined by b tð Þ ¼ R0 tð Þ=D, where R0(t), the basic
reproductive number, is the number of secondary infections the average infectious
person would produce in a fully susceptible population at time t. Absolute
humidity (AH) modulates transmission rates within this model by altering R0(t)
through an exponential relationship similar to how AH has been show to affect
both influenza virus survival and transmission in laboratory experiments4:

R0 tð Þ ¼ R0 min þ R0 max �R0 minð Þe� aq tð Þ ð3Þ

where R0 min is the minimum daily basic reproductive number, R0 max is the
maximum daily basic reproductive number, a¼ 180, and q(t) is the time-varying
specific humidity, a measure of AH. The value of a is estimated from the laboratory
regression of influenza virus survival upon AH5.

As formulated above, this model contains two variables (S and I) and four
parameters (L, D, R0 max and R0 min). S and I are continuous variables, such that
fractional persons are simulated, which enables transitions between model states to

be calculated directly from Equations 1 and 2 without any stochasticity.
Simulations were performed with fixed travel-related seeding of 0.1 infections
per day (1 infection every 10 days).

Specific humidity data. Specific humidity (SH) data were compiled from the
National Land Data Assimilation System (NLDAS) project-2 data set. These data
are derived through spatial interpolation, temporal disaggregation and vertical
adjustment from station measurements and National Center for Environmental
Prediction North American Regional Reanalysis22. The gridded NLDAS
meteorological data are available in hourly time steps on a 0.125� regular grid from
1979 through the present23. Local SH data for each of the 115 cities included in these
forecasts were assembled for 1979–2011. These hourly data were then averaged to
daily resolution. A 1979–2002 (24-year) daily climatology was then constructed for
each city and used as the daily specific humidity forcing for all retrospective
forecasts. A 1979–2011 (33-year) daily climatology was constructed for each city and
used for the real-time forecasts during the 2012–2013 influenza season.

Observational estimates of influenza incidence. GFT data8 give estimates of
weekly ILI per 100,000 people seeking medical attention based on a simple
statistical model that uses internet search query activity as a predictor of US
Centers for Disease Control and Prevention (CDC) ILI (see ref. 7 for details). GFT
ILI data are available weekly in real time and, in the continental USA, provided
at the municipal scale for 115 cities. Previously, we used GFT ILI as our estimate
of respiratory infection incidence when retrospectively forecasting in New York
City3. For this study, we employ an alternate metric that more precisely estimates
influenza infection incidence.

In the USA, CDC ILI is a measure of influenza among patients presenting at
sentinel hospitals and clinics, which comprise the US Outpatient Influenza-like
Illness Surveillance Network (ILINet). ILI is a symptomatic diagnosis requiring
fever above 37.8 �C plus cough and/or sore throat. Patients for which the aetiology
is known to be not influenza are not classified as ILI; however, the specific
pathogen infecting most patients presenting with ILI is not typically determined.
As such, the ILI designation includes patients with other respiratory viruses, such
as rhinovirus and respiratory syncytial virus, who present with similar symptoms.
Owing to this non-specificity, outbreaks of ILI tend to be of longer duration than
pure influenza outbreaks. A cleaner signal of actual influenza infection incidence
can be generated simply by multiplying ILI with a second observational estimate:
the percentage of people presenting with ILI who tested positive for influenza
(hereafter ‘influenza positive proportions’)9.

Weekly US influenza positive proportions are compiled through the National
Respiratory and Enteric Virus Surveillance System (NREVSS) and US-based World
Health Organization (WHO) Collaborating Laboratories. The NREVSS and WHO
laboratories assay volunteered respiratory swab samples from patients presenting
with ILI for aetiological agents. The weekly data derived from this laboratory
network provides an estimate of the percentage of patients presenting with ILI who
are infected with influenza10. During the 2012–2013 influenza season these weekly
data were first available with a lag, 6 days following the end of a given influenza
week. In addition, unlike the GFT ILI estimates, which were available in real time at
the municipal scale, influenza positive proportions were only available nationally
and regionally. Still, by multiplying weekly municipal GFT ILI estimates by CDC
census division regional influenza positive proportions for the same week, a near
real-time estimate of municipal influenza infection per 100,000 patient visits can be
made. Here we refer to this metric as ILIþ (Supplementary Fig. S10).

Outbreaks of ILIþ are of shorter duration than GFT ILI alone. In addition,
observed ILIþ outbreak trajectories are more consistent with the transmission
dynamics simulated within an influenza model. That is, model dynamics are more
likely to produce an outbreak with the duration, peak magnitude and total number
of cases seen in ILIþ than with ILI. Consequently, use of the ILIþ metric may
provide a better observational target for a model simulating purely influenza
transmission. In addition, the ILIþ target may also provide a better observation
for recursive assimilation and optimization of the model, as well as forecast. In this
study, 115 US cities were forecast retrospectively using the ILIþ observation
metric and 108 US cities were forecast in near real time (6-day delay) during the
2012–2013 influenza season (Supplementary Table S1). Nb: GFT stopped releasing
ILI estimates for seven cities during the 2012–2013 influenza season, hence only
108 of the 115 cites were forecast in near real time.

Scaling ILIþ to estimate influenza incidence. To assimilate ILIþ observations
into the SIRS model, these values must first be converted to influenza incidence, a
variable that is distinct from I, but which can be tracked within the SIRS model.
(incidence represents the number of new influenza infections during a week,
whereas I is the number of infected persons at any point in time.) Conversion
between ILIþ and influenza incidence is influenced by several factors. Specifically,
ILIþ is simply an estimate of the probability for a given week that a person
seeking medical treatment, m, has influenza, that is, pði jmÞ. By Bayes theorem,
ILIþ is then

ILIþ � pði jmÞ ¼ p ið Þp m j ið Þ
p mð Þ ð4Þ
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where p(i) is the probability of getting influenza in a given week (that is, influenza
incidence), pðm j iÞis the probability of seeking medical attention given infection
with influenza, and p(m) is the probability that anyone seeks medical attention for
any reason. Equation 4 can be rearranged as:

pðiÞ ¼ p mð Þ
p m j ið Þ p i jmð Þ � gILIþ ð5Þ

where g ¼ p mð Þ=p m j ið Þ. That is, the probability of incident influenza infection in
the general population, p(i), is approximately equal to ILIþ scaled by:

(1) the probability that anyone seeks medical attention for any reason, p(m)
(2) the probability that a person with influenza seeks medical attention, pðm j iÞ

Both scaling probabilities change through time. In particular, pðm j iÞ changes
with influenza virulence: an influenza strain producing more severe symptoms will
increase the probability that an infected person seeks medical attention.

We ran retrospective forecasts with 1 � g � 50, and found that values ranging
from 2 to 15 had good predictive ability. For the 2012–2013 season, we generated
weekly real-time forecasts using different values of g between 2 and 15. As the
season progressed, it became clear that one or more of the circulating influenza
strains was highly virulent. As a consequence, we focused our forecasting efforts on
lower scaling values, that is, g ¼ 2:5. These are the forecasts presented in this paper
(real-time forecasts made with alternate scaling factors, for example, g ¼ 5, were
archived and are available for analysis). In the future, the scaling factor, g, might
not be fixed but rather treated as a free parameter and adjusted during EAKF
assimilation of observations.

In the EAKF framework, the variance of observational error must be prescribed.
For this work, we specified a heuristic observation error variance (OEV) that varied
with the magnitude of the ILIþ estimate. Similar to Shaman and Karspeck3, the
OEV for week k, was defined as

OEVk ¼ 1�105 þ
Pk� 1

j¼k� 3
ILIþ j

3

� �2

5

2
64

3
75 ð6Þ

where ILIþ j is the ILIþ estimate for week j. OEV has units of (infected people per
100,000 people) squared. Equation 6 indicates that there is a baseline uncertainty in
estimates of influenza incidence that increases or decreases proportionally with
ILIþ estimates summed for the preceding 3 weeks.

Model training using EAKF. Two hundred-member ensemble simulations with
the SIRS model were trained up to the point of forecast using the scaled ILIþ
observations and the EAKF. Throughout training, the EAKF algorithm updates the
ensemble simulations of the observed state variable (that is, incidence) to better
align with scaled ILIþ observations. Simultaneously, it uses cross ensemble co-
variability to adjust both the unobserved state variables and parameters. In doing
so, the ensemble simulations better match observed incidence levels and accrue
other key variable and parameter characteristics needed to better mimic local
outbreak dynamics. Unlike some Kalman filter forms that use random perturba-
tions (that is, stochasticity) in conjunction with the Kalman gain to obtain each
update, the EAKF algorithm uses a non-random, deterministic adjustment6,24.
More details on the application of the EAKF to the SIRS are provided in the study
by Shaman and Karspeck3.

Multiplicative inflation was applied following the assimilation of each ILIþ
observation of incidence3,6. The inflation was used to counter EAKF tendency
towards ‘filter divergence’, which occurs when the prior ensemble spread becomes
spuriously small, causing the system to give too little weight to observations and to
diverge from the true trajectory. For this application, the variance of the observed
state variable, influenza incidence, was inflated by a multiplicative factor of l¼ 1.02
prior to each weekly observational assimilation and calculation of the posterior. The
remaining model state variables and parameters were augmented with a 2% increase
of all prior ensemble values. This augmentation increases the mean and variance of
these model state variables and parameters prior to weekly assimilation of the
observation and calculation of posterior values based on EAKF formulations and the
co-variability of the observed state variable with model state variables and parameters.

Retrospective forecasts. Retrospective forecasts were performed using the
humidity-forced SIRS model for the 2003–2004 through 2011–2012 influenza
seasons. Influenza seasons begin around week 40 of the calendar year, corre-
sponding to early October. This start date is typically before there is significant
influenza activity. Focus is restricted to seasonal influenza prediction, so the
2008–2009 and 2009–2010 pandemic years were excluded from the analysis. For
each year, assimilation of ILIþ data using a 200-member EAKF was initiated in
the fall season with a random selection of initial state variables (S and I) and
parameters (L, D, R0 max and R0 min). Each week the latest ILIþ observation was
assimilated and a new posterior ensemble generated6. This posterior ensemble
was then propagated forward to the next weekly observation and the assimilation
process was repeated. At each week, forecasts were generated by integrating the
model posterior forward without further training3 to the end of the influenza
season.

To sample a more complete range of possible parameters and model states, the
assimilation/forecast process outlined above was repeated 125 times. Specifically,
25 200-member ensembles were initialized with different randomly chosen initial
parameters and state conditions and initiated at one of 5 staggered start weeks in
the fall season (weeks 38, 39, 40, 41 or 42). Thus, for each of the 7 influenza
seasons, 39 weekly retrospective forecasts were generated for each of 125
200-member ensemble simulations for each of 115 cities within the USA
(Supplementary Table S1). Initial state variable and parameter conditions for each
ensemble member simulation were generated from the same prior for each of these
ensemble simulations. The parameter ranges for this initial random selection were
2rLr10, 2rDr7, 1.3rR0 maxr4, 0.8rR0 minr1.3, as in Shaman and
Karspeck3, and combinations were selected using a Latin hypercube sampling
strategy. By running multiple ensembles for each city, year and start date, the
multiple forecasts generated provide a measure of variability of ensemble forecast
statistics, that is how much the ensemble mode varies as a function of random
initial conditions and start date.

Analysis of retrospective forecasts. The quality of the retrospective forecasts
was analysed by comparing the accuracy of each ensemble mode prediction of peak
timing with the spread of predictions among the 200 simulations within that
ensemble3. A forecast is deemed accurate if the ensemble mode predicted peak lies
within 1 week of the observed ILIþ peak. The spread is calculated as the log
ensemble variance of the predicted peak weeks. Plots of mode accuracy versus
ensemble spread indicate an inverse relationship in which the expected accuracy
increases as the log ensemble variance decreases (Fig. 1 and Supplementary
Fig. S1). These relationships, stratified by lead of prediction provide an expectance
of accuracy for the 2012–2013 real-time forecasts.

Generation of real-time forecasts. The 2012–2013 near real-time forecasts were
generated using a broader range of start dates: weeks 32, 34, 36, 38, 40 and 42. For
each of these six start dates, 25 200-member ensembles were initiated, each with a
different suite of randomly chosen parameters and initial conditions. This is
analogous to the procedure used to generate retrospective forecasts. Following
assimilation of the most recent ILIþ observation and generation of a new pos-
terior, the ensemble was integrated forward to the end of the season (a combined
40 weeks of training and forecast). Thus, for each city, 150 200-member ensemble
forecasts were generated each week upon CDC release of the latest census division
influenza positive proportions. This process created a distribution of 150 ensemble-
mode peak timing predictions each week for each city (that is, each 200-member
ensemble produces an ensemble mode prediction of peak timing). Often these 150
mode predictions were redundant, but in many instances, a range of mode pre-
dicted outcomes were realized (reflecting uncertainty in the ensemble forecasts).

New influenza-positive proportions were initially released 6 days following the
end of the most recently completed week. As a consequence, the forecasts were
performed in ‘near real time’. For example, the week 52 forecasts were produced
on 4 January 2013, the day the week 52 influenza positive proportions were
released. These forecasts included assimilation of week 52 ILIþ estimates, and ran
in forecast mode from 30 December 2012 onward. A 1-week lead prediction
for this forecast implies predicted local influenza incidence peak during week 1
(30 December 2012 to 5 January 2013). The first forecast (week 47) was performed
following assimilation of week 47 data. Results from forecasts generated for week
47 (2012) through week 8 (2013) are presented.
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