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VECTOR/PATHOGEN/HOST INTERACTION, TRANSMISSION

Meteorological and Hydrological Influences on the Spatial and
Temporal Prevalence of West Nile Virus in Culex Mosquitoes,

Suffolk County, New York

JEFFREY SHAMAN,1 KERRI HARDING,2 AND SCOTT R. CAMPBELL2

J. Med. Entomol. 48(4): 867Ð875 (2011); DOI: 10.1603/ME10269

ABSTRACT The factors determining the spatial and temporal distribution of West Nile virus (family
Flaviviridae, genus Flavivirus, WNV) activity are not well understood. Here, we explore the effects
of hydrological and meteorological conditions on WNV infection among Culex genus mosquitoes
collected during 2001Ð2009 in Suffolk County, Long Island, NY. We show that WNV infection rates
in assayed pools of Culex mosquitoes are associated in both space and time with hydrological and
meteorological variability. SpeciÞcally, wet winter, warm and wet spring conditions, and dry summer
conditions are associated with the increased local prevalence of WNV amongCulexmosquitoes during
summer and fall. These Þndings indicate that within Suffolk County, and for a given year, areas at risk
for heightened WNV activity may be identiÞed in advance by using hydrology model estimates of land
surface wetness and observed meteorological conditions.

KEY WORDS West Nile virus, hydrology, meteorology, transmission, ampliÞcation

West Nile virus (family Flaviviridae, genus Flavivirus,
WNV) Þrst appeared in North America in New York
City during 1999 (MarÞn and Gubler 2001). Since
its introduction, this mosquito-borne pathogen has
spread throughout the continent. The arrival of WNV
in many North American locales was marked by large
numbers of WNV infections among avian, equine, and
human hosts (USGS 2010). After these initial epidem-
ics, the virus did not disappear but instead settled into
a pattern of endemicity in which outbreaks of variable
size develop in some years but not others.

There is ongoing need to improve our understand-
ing of how and why these hot spots of increased WNV
activity develop in space and time. Some of this spa-
tialÐtemporal variability is no doubt linked to envi-
ronmental variability, including changes in meteoro-
logical and hydrological conditions. With more than a
decade of recorded WNV activity and the develop-
ment of gridded, high-resolution meteorological and
hydrological observations, there is now considerable
opportunity to examine and understand how environ-
mental conditions affect WNV ampliÞcation and
transmission dynamics in both space and time. In par-
ticular, we can use meteorological and hydrological
data to identify how weather and land surface wetness
inßuence 1) the distribution, abundance, and age
structure of vector mosquitoes; 2) the zoonotic trans-

mission, ampliÞcation, andprevalenceofWNVinboth
vector mosquito and vertebrate host populations; and
3) the transmission of WNV to dead-end hosts, in-
cluding humans.

Robust associations between environmental condi-
tions and indicators of WNV activity can lead to pre-
dictive frameworks for identifying areas at risk for
WNV in real time (Shaman and Day 2005; Day and
Shaman 2008). This ability to monitor WNV activity
will facilitate more efÞcient appropriation of vector
control resources and public health interventions
aimed at reducing human West Nile (WN) cases.

Our focus for this study is Suffolk County, Long
Island, NY. We examine the statistical association be-
tween local meteorological and hydrological condi-
tions and the presence of WNV in pools of gravid and
light trap collected Culex mosquitoes during 2001Ð
2009.

Materials and Methods

Study Area. In 1999, West Nile virus was discovered
within Suffolk County and was found in mosquitoes,
birds, and horses. Since then, WNV has been found
each year infecting a combination of humans, mos-
quitoes, birds, and horses. East of New York City,
Suffolk County has a land area of �2.4 � 109 m2 (912
square miles) and occupies the eastern portion of
Long Island, NY. Generally, the western portion the
county consists of densely populated residential areas
and commercial properties. The eastern portion of the
county is rural with a less dense human population and
more open space and agriculture. Natural areas are
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found throughout the county but are more prevalent
in the eastern portion. Natural woodlands (pineland
or hardwood forests) and freshwater wetlands are
found throughout the county with coastal salt marshes
primarily on the south shore and east end.
Mosquito Pool Data. Our study focuses on WNV-

assayed pools of Culex spp. mosquitoes. Culex mos-
quitoes have been identiÞed as vectors of WNV
throughout the world (Hayes et al. 2005). Three spe-
cies of Culex predominate in Suffolk County, NY:
Culex pipiens L., Culex restuans Theobald, and Culex
salinariusCoquillett, and all three species have tested
WNV positive within Suffolk County (Rochlin et al.
2009). In the northern United States, enzootic WNV
transmission is thought to occur primarily viaCx. pipi-
ens andCx. restuans (Kulasekera et al. 2001; Andreadis
et al. 2004). Epizootic WNV transmission may be pri-
marily due toCx. pipiens (Kilpatrick et al. 2005, Hamer
et al. 2008) and Cx. salinarius (Kulasekera et al. 2001;
Andreadis et al. 2004).

Mosquito collections were made throughout Suf-
folk County during 2001Ð2009 by using both Centers
for Disease Control and Prevention (CDC) gravid and
CDC miniature light traps (John W. Hock Co., Gaines-
ville, FL). Gravid traps were baited with rabbit-chow
infusion and light traps were baited with dry ice.
Mosquito surveillance was conducted weekly from
approximately early June to early October, depending
on mosquito population levels and the presence of
WNV. At the beginning of each season, trapping sites
wereguidedby thehistoricalpresenceofWNV.As the
seasons progressed, mosquito surveillance was ex-
panded to locations with newly identiÞed WNV in
humans, birds, and horses. Approximately half of the
traps were operated in and around various town,
county, and state parks.

Collected mosquitoes were anesthetized with dry
ice and identiÞed to species. Cx. pipiens, Cx. restuans,
and Cx. salinarius have similar morphological charac-
teristics that can be compromised by physical damage
during collection (Crabtree et al. 1995; Debrunner-
Vossbrinck et al. 1996). Thus, historically in New York,
Cx. pipiens and Cx. restuans are combined (i.e., Cx.
pipiens/restuans) for arboviral testing (Bernard et al.
2001).Cx. salinarius specimens are separated from the
other Culex species whenever possible, but again, due
to damage to identifying characters during collection,
Cx. salinarius may be unintentionally included in Cx.
pipiens/restuans pools (Bernard and Kramer 2001).

For arboviral analysis, specimens were submitted to
the New York State Department of Health (Arbovirus
Laboratory, Wadsworth Center). West Nile virus
analysis was performed by real-time reverse transcrip-
tion-polymerase chain reaction (PCR) and all non-
Culex specimens were placed in Vero cell culture to
attempt isolation of other arboviruses (Lukacik et al.
2006). Specimens were submitted in pool sizes of 10-
100 specimens (mean � 28.7; median � 25) according
to New York State Department of Health protocol
(Bernard et al. 2001; Lukacik et al. 2006). To meet this
requirement when mosquito numbers are low, spec-
imens of identical species from the same location may

be combined from the gravid and light traps or com-
bined over 2 wk, which allows for increased arboviral
testing while coarsening the temporal resolution of
the record.

Table 1 presents the yearly number of trap loca-
tions, as well as the number of Culex pools assayed for
WNV and the number positive for WNV. Non-Culex
mosquitoes also were collected, pooled, and assayed
for WNV during 2001-2009 (in total, 5,000 additional
pool assays, or 28% of all mosquito pools); however,
Culex pools accounted for 96.6% of positive pools.
Only Culex pools are included in this analysis.
Hydrological and Meteorological Data. For this

study, we used Mosaic hydrology model estimates of
soil moisture conditions (Koster and Suarez 1996).
The Mosaic hydrology model divides the land surface
into square grid cells, each with a multilayer soil col-
umn structure. Local surface meteorological condi-
tions are used to integrate the model through time and
compute column-averaged water and energy ßuxes at
the land surface and within the soil column. Each grid
cell is further divided into a “mosaic” of tiles, each
representing different vegetative surfaces, which ac-
count for variability of surface characteristics within
the cell area. Observed vegetation distributions are
used to determine the partitioning of tiles, and the
water and energy balances in each tile are simulated
independently.

Mosaic model simulations are produced through the
North American Land Data Assimilation Systems
(NLDAS) project-2 and are available in hourly time
steps at 0.125� resolution from 1979 through the pres-
ent (Mitchell et al. 2004; Schaake et al. 2004, NLDAS
2010). At this resolution (�13 by 13 km), each grid cell
resolves hydrologic conditions at a geographic scale
matching the upper limit of the ßight range reported
for Cx. tarsalis in California (Reisen et al. 1992) and
represents an area in which the vector mosquito pop-
ulation and WNV transmission dynamics are probably
localized. The Mosaic model uses three soil layers with
thicknesses from top to bottom of 10, 30, and 160 cm,
respectively, and a uniform rooting depth of 40 cm.
Water storage in each model column layer is the
weighted average of the water storage from the col-
umn tiles.

Table 1. Number of trap locations used each year in Suffolk
County, Long Island, NY

Yr
No. of trap
locations

No. of Culex
pools tested

No. of WNV-positive
Culex pools

2001 75 721 48
2002 101 786 30
2003 89 1,088 33
2004 58 613 7
2005 104 1,051 69
2006 63 858 54
2007 47 432 12
2008 95 643 40
2009 50 775 15

The table also lists the annual numbers of Culex pools tested for
WNV and the number positive.
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For this work, we used two Mosaic model-simulated
estimates of land surface wetness: root zone soil mois-
ture (RZSM), which represents water content in the
top 40 cm of the soil column, and layer one soil mois-
ture (L1SM), which represents water content in the
top 10 cm of the soil column. Both RZSM and L1SM
are in units of kilograms per square meter. For the
analysis, the hourly RZSM and L1SM estimates were
each temporally aggregated to monthly averages dur-
ing the period 2001-2009 and compared with the spa-
tiotemporal distribution of WNV-positive pools of
trap-collected Culex mosquitoes.

In addition, meteorological conditions were in-
cluded in the analysis. These data also were produced
by NLDAS project-2 and are derived through spatial
interpolation, temporal disaggregation, and vertical
adjustment from station measurements and National
Center for Environmental Prediction North American
Regional Reanalysis (Mesinger et al. 2006). These me-
teorological data are also available in hourly time steps
at 0.125� resolution from 1979 through the present
(Cosgrove et al. 2003). Monthly averages of precipi-
tation (surface rainfall and snowfall measured in mil-
limeters per day), temperature (2-m above-ground air
temperature in Kelvin), and speciÞc humidity (2-m
above ground measure of absolute humidity in kilo-
grams per kilograms) were used in this analysis.
Statistical Analysis. To formally assess the effect of

hydrological and meteorological variability on WNV
prevalence we used a generalized linear model
(GLM). The predictand was the annual percentage of
Culex pools testing WNV positive within each NLDAS
grid cell area. These percentage data are exponential,
so we used a Poisson model with a dispersion param-
eter to account for inßated variance. In total, 116 grid
cell-years exist in Suffolk County during 2001-2009, an
average of �13 per year. All of these data were used
in the analysis.

Regression was performed using combinations of
the meteorological (precipitation, temperature, and
speciÞc humidity) and hydrological (RZSM or L1SM)
monthly data as the predictor variables. WNV pres-
ence among Culex mosquito pools peaks in Suffolk
County in August (Fig. 1); we therefore only tested
meteorological and hydrological conditions during
JanuaryÐAugust in our GLM. Up to four predictor
variables were tested at once: individual monthly con-

ditions of temperature, precipitation, speciÞc humid-
ity, and either RZSM or L1SM. RZSM and L1SM were
not used in the same regression. An example regres-
sion would use March temperatures, June precipita-
tion, and July RZSM to predict the annual percentage
of WNV-positive Culex pools for each grid cell area in
Suffolk County during 2001-2009.

In addition, we also tested GLMs with two monthly
lags of the Mosaic hydrological condition estimates,
e.g., March L1SM and July L1SM. This further dis-
crimination allowed for variable hydrological effects
through the year, in particular different effects during
spring and summer when different Culex mosquito
species are active and the effect of hydrology on WNV
ampliÞcation may diverge. Such variable hydrological
effects have been shown to affect arbovirus transmis-
sion rates in other regions of the United States (Sha-
man et al. 2002, 2005). Only single monthly meteoro-
logical data were included in these regressions, for up
to a total of Þve explanatory variables. An example
regression could use March temperatures, March spe-
ciÞc humidity, June precipitation, February RZSM,
and July RZSM.

Best-Þt models were identiÞed based on whole
model goodness-of-Þt among only the GLMs for
which all parameter estimates were statistically sig-
niÞcant (P� 0.05). Two goodness-of-Þt metrics were
used: model deviance and the Akaike Information
Criterion (AIC). The two measures of goodness-of-Þt
were generally in accord with one another.
Temporal Cross-Validation. Leave-one-out tempo-

ral cross-validation (LOOTCV) also was performed.
The GLM analysis was repeated using a subset of the
full Suffolk County record in which 1 yr of data were
omitted from the analysis. The parameter estimates
and their signiÞcance for the LOOTCV model were
examined and compared with the full model and the
LOOTCV model was used to predict the percentage
of WNV-positive Culex pools at each site for the omit-
ted year. This process was repeated for each of the 9
yr (2001-2009) of data. The omitted year estimates
were then compared with the observed percentage of
WNV-positiveCulexpools via calculation of root mean
square error (RMSE). This RMSE was then compared
with the RMSE for the full GLM model that included
all 9 yr data.
Spatial Considerations and Anomaly Analysis. A

greater percentage of Culex pools tested WNV posi-
tive in western Suffolk County than eastern Suffolk
County (Fig. 2). This strong westÐeast gradient of
WNV activity is mirrored by westÐeast gradients of
meteorological and hydrological conditions. In par-
ticular, temperatures during spring and summer are
warmer and L1SM and RZSM conditions throughout
the year are drier in western Suffolk County than in
eastern Suffolk County (Fig. 3). Precipitation does not
show any consistent westÐeast gradient for the region;
speciÞc humidity mirrors temperature in the colder
winter, but during summer more directly reßects
proximity to warm open ocean waters. These obser-
vations indicate that land surface wetness conditions
on Long Island are strongly inßuenced by tempera-
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Fig. 1. Average monthly numbers of WNV negative and
positive Culex pools in Suffolk County during 2001Ð2009.
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ture, which greatly controls rates of evaporation and
transpiration from the land surface.

Due to these westÐeast gradients of both WNV
activity and environmental conditions, it was consid-
ered possible that the GLM analysis would merely
identify the covariability of these spatial features, i.e.,
that more WNV-positive pools occur where temper-
atures are warmer and the land surface wetness (i.e.,
RZSM and L1SM) is reduced. To account for this
covariability, we performed two additional analyses:
1) we divided the county at 73� W into western and
eastern portions and repeated the GLM analysis on
each independently; and 2) we repeated the GLM
analysis by using local monthly anomalies of the me-
teorological and hydrological conditions.

For the second analysis, at each grid cell, we sub-
tracted the 2001Ð2009 monthly average (i.e., monthly
climatology) from the monthly time series:

T��x,y,mn	 � T�x,y,yr,mn	 � T�x,y,mn	 [1]

where T�(x,y,yr,mn) is the monthly anomaly of some
environmental conditionT at location (x,y) for year yr
and month mn. T�(x,y,mn) is the monthly value of T

averaged over all years (2001-2009) at location (x,y)
such that

T�x,y,mn	 �

�
yr� 2001

2009

T�x,y,yr,mn	

9
[2]

By using anomalies, mean spatial gradients of hydro-
logical and meteorological conditions are removed,
and we can examine the effects of local deviations
from typical local conditions on WNV activity.

Results

Analysis of the entire record (2001-2009 for all of
Suffolk County) indicates that the eight best-Þtting
GLMs are combinations with Þve explanatory vari-
ables (Table 2). All of these models indicate that
wetter land surface conditions during winter (Janu-
aryÐMarch), drier land surface conditions during sum-
mer (JuneÐAugust), increased April temperatures, in-
creased May precipitation, and low MarchÐApril
speciÞc humidity favor a higher percentage of WNV-

Fig. 2. Yearly proportion of Culex pools testing WNV positive in each NLDAS grid cell area of Suffolk County. Only grid
cell-years with WNV-tested Culex pools and Mosaic hydrology model simulations are shown.
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positive Culex pools for that same year in a given grid
cell. These Þndings suggest that wetter winter condi-
tions (positive L1SM or RZSM effect), wetter and
hotter spring conditions (positive precipitation and
temperature effects), and drier summer conditions
(negativeL1SMorRZSMeffect)all favor theenzootic
transmission of WNV among Culex vectors and ver-
tebrate ampliÞcation hosts.

The 10 best-Þtting GLMs were all subjected to
LOOTCV. All LOOTCV models produce parameter
estimates with the same sign combinations and of the
same general magnitude as their counterpart full
GLMs. In fact, for all 10 best-Þt models (Table 2), all
LOOTCV parameter estimates are well within a factor
of 2 of the full GLM model parameter estimates and
most are within 25% (the median deviation is 18.6%).
Generally, the LOOTCV parameter estimates also re-
main statistically signiÞcant (P � 0.05). There are
some exceptions. For omission of 2001, 2005, or 2008,
the speciÞc humidity parameter estimate for one of
the 10 best-Þtting models fails to reach this level of
signiÞcance. For 2006 omission, the winter land sur-
face wetness in three of the eight Þve-variable models
fails to reach this level of signiÞcance, as does the
summer land surface dryness for one of the eight
models, and precipitation in the three-variable model.

Overall, these results indicate that the full model is
most sensitive to the exclusion of 2006 from the anal-
ysis; however, LOOTCV models that omit 2006 still
yield best-Þt models and parameter estimates that are
similar to the full model. Thus, the LOOTCV Þndings
indicate that 2006 is a critical year for helping to
establish the importance of winter (JanuaryÐMarch)

wetting and hydrology in general, but the overall re-
sults are not unduly sensitive to the exclusion of 2006
or any other year.

RMSE calculated for the LOOTCV predictions for
each of the 10 models were slightly larger than full
model RMSE, but these differences are �15% (Table
3). Figure 4 shows the LOOTCV predictions for the
omitted data for the best-Þt GLM (top row of Table 2),
as well as the full GLM Þt. Both model predictions are
plotted in order from least to greatest about which the
corresponding observations are scattered. Both the
LOOTCV and full GLM predictions perform similarly
and successfully discriminate areas and years for
which 
10% of tested Culex pools were positive.

Analysis of the western portion of Suffolk County
produces best-Þt GLMs that are similar to those for the
entire county (model results not shown). The 10 best-
Þtting GLMs for western Suffolk County are all com-
prised of three to Þve variables and tend to include
combinations with a wetter winter land surface (Janu-
aryÐMarch); drier April, June, or July land surface;
warmer temperatures during AprilÐAugust; more pre-
cipitation during May or August; and less humid con-
ditions during MarchÐAugust. These Þndings are gen-
erally consistent with the results for the entire county
(Table 2).

A similar analysis for the eastern portion of Suffolk
County produces few signiÞcant models (10 of a pos-
sible 34,263 tested combinations). This shortcoming is
in part due to the lack of WNV activity in the area.
None of the grid cell sites in eastern Suffolk County
produce an annual percentage of WNV-positiveCulex
pools 
8.5%. Still, seven of the 10 eastern region sig-

Fig. 3. Monthly averages of temperature (Kelvin), precipitation (kilograms per square meter), speciÞc humidity (ki-
lograms per kilogram), L1SM (kilograms per square meter), and RZSM (kilograms per square meter) on Long Island,
including Suffolk County, for January, April, and July, 2001Ð2009.
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niÞcant GLMs (i.e., all parameter estimates signiÞcant
at P � 0.05) select for wetter land surface conditions
during either March or May, drier land surface con-
ditions during June or July, hotter March or April
temperatures, and increased precipitation during
May. These relationships are consistent with those
found for the whole of Suffolk County (Table 2).

We also repeated the GLM analysis for the whole of
Suffolk county by using local monthly anomalies of
meteorological and hydrological conditions (equation
1). Seven of the 10 best-Þtting anomaly GLMs in-
cluded wetter land surface conditions during either
March or May, drier land surface conditions during
June or July, hotter April temperatures, increased pre-
cipitation during March or May, and lower speciÞc
humidity during April. Again, these Þndings are gen-
erally consistent with the results for the entire county
(Table 2).

Some spatial autocorrelation of the annual percent-
age of WNV positiveCulexpools exists among grid cell
sites in Suffolk County (Fig. 5, top). The best-Þtting
GLMs account for much of this spatial autocorrela-
tion; this model diminution of the spatial autocorre-
lation is evident in the correlogram of the model re-
siduals (Fig. 5, bottom). Nonetheless, we did perform
simultaneous autoregression (SAR) with the GLM
(Haining 1990; Shaman et al. 2010). The best-Þtting
models produced within the SAR GLM framework
were in fact weaker (higher AIC and deviance) than
the best-Þtting models produced with the GLM (Ta-
ble 2). These Þndings indicate that hydrological and
meteorological variables provide a better constraint of
the spatial structure of the Þeld than inclusion of a
simple distance-weighted spatial autoregressive term.

Discussion

Our Þndings indicate that meteorological and hy-
drological conditions provide a robust constraint on
the spatial and temporal variability of WNV among
pools of Culex mosquitoes in Suffolk County. The
best-Þtting GLMs indicate that wetter winter land
surface conditions, warmer spring temperatures, in-
creased spring precipitation, and drier early summer
land surface conditions all favor the increased prev-
alence of WNV among Culex vectors. Based on tem-

T
ab

le
2

.
T

he
2

0
0

1
–2

0
0

9
be

st
-fi

t
fu

ll
G

L
M

re
su

lt
s

fo
r

al
l

of
Su

ff
ol

k
C

ou
nt

y,
L

on
g

Is
la

nd
,

N
Y

M
o
d
e
l

A
IC

L
1S

M
(l

ag
1)

L
1S

M
(l

ag
2)

R
Z

S
M

(l
ag

1)
R

Z
S
M

(l
ag

2)
T

e
m

p
P

re
ci

p
it

at
io

n
S
p
e
ci

Þ
c

h
u
m

id
it

y

1
34

4.
5

M
ar

.0
.2

72
(0

.0
87

)
Ju

n
e

�
0.

28
9

(0
.0

89
)

A
p
ri

l
1.

11
9

(0
.1

75
)

M
ay

0.
02

8
(0

.0
08

)
A

p
ri

l
�

27
79

(5
32

)
2

34
4.

5
M

ar
.0

.0
64

(0
.0

21
)

Ju
n

e
�

0.
06

9
(0

.0
21

)
A

p
ri

l
1.

10
3

(0
.1

66
)

M
ay

0.
02

8
(0

.0
08

)
A

p
ri

l
�

27
32

(5
23

)
3

35
0.

9
M

ar
.0

.1
46

(0
.0

57
)

Ju
ly

�
0.

15
1

(0
.0

47
)

A
p
ri

l
1.

24
6

(0
.1

73
)

M
ay

0.
01

6
(0

.0
06

)
A

p
ri

l
�

31
54

(4
99

)
4

35
1.

1
M

ar
.0

.1
93

(0
.0

66
)

Ju
ly

�
0.

25
8

(0
.0

60
)

A
p
ri

l
0.

34
8

(0
.1

18
)

M
ay

0.
02

2
(0

.0
07

)
M

ar
.�

20
53

(4
32

)
5

35
1.

3
F

e
b
.0

.1
68

(0
.0

77
)

Ju
ly

�
0.

18
1

(0
.0

64
)

A
p
ri

l
1.

08
3

(0
.1

63
)

M
ay

0.
01

2
(0

.0
05

)
A

p
ri

l
�

28
58

(5
13

)
6

35
1.

8
M

ar
.0

.0
34

(0
.0

14
)

Ju
ly

�
0.

03
6

(0
.0

12
)

A
p
ri

l
1.

22
5

(0
.1

64
)

M
ay

0.
01

5
(0

.0
06

)
A

p
ri

l
�

30
27

(4
91

)
7

35
2.

1
M

ar
.0

.0
48

(0
.0

16
)

Ju
ly

�
0.

06
2

(0
.0

15
)

A
p
ri

l
0.

40
7

(0
.1

13
)

M
ay

0.
02

2
(0

.0
07

)
M

ar
.�

19
44

(4
20

)
8

35
3.

6
Ja

n
.0

.1
31

(0
.0

57
)

A
u
g
.�

0.
16

7
(0

.0
53

)
Ju

n
e

0.
55

8
(0

.0
99

)
M

ay
0.

02
5

(0
.0

07
)

A
u
g
.�

24
5

(1
21

)
9

35
4.

0
M

ay
1.

86
4

(0
.2

26
)

M
ay

0.
02

9
(0

.0
06

)
M

ay
�

35
80

(5
12

)
10

35
5.

1
M

ay
0.

19
9

(0
.0

96
)

Ju
ly

�
0.

20
6

(0
.0

87
)

A
p
ri

l
1.

38
5

(0
.2

04
)

A
p
ri

l
�

39
24

(7
23

)

M
o
d
e
ls

in
cl

u
d
e

u
p

to
Þ

v
e

v
ar

ia
b
le

s.
B

e
st

-Þ
t
m

o
d
e
ls

ar
e

d
e
te

rm
in

e
d

b
y

A
IC

.C
o
lu

m
n

s
sh

o
w

th
e

p
ar

am
e
te

r
e
ff

e
ct

s
as

so
ci

at
e
d

w
it

h
e
ac

h
v
ar

ia
b
le

,i
n

cl
u
d
in

g
th

e
m

o
n

th
u
se

d
in

th
e

an
al

y
si

s,
th

e
p
ar

am
e
te

r
e
st

im
at

e
,

an
d

in
p
ar

e
n

th
e
se

s
th

e
S
E

o
f

th
e

p
ar

am
e
te

r
e
st

im
at

e
.
U

n
it

s
ar

e
p
e
rc

e
n

ta
g
e

o
f

W
N

V
-p

o
si

ti
v
e

p
o
o
ls

p
e
r

k
il
o
g
ra

m
p
e
r

sq
u
ar

e
m

e
te

r
(L

1S
M

,
R

Z
S
M

,
an

d
p
re

ci
p
it

at
io

n
),

p
e
rc

e
n

ta
g
e

o
f

W
N

V
-p

o
si

ti
v
e

p
e
r

d
e
g
re

e
C

e
ls

iu
s

(t
e
m

p
e
rt

u
re

),
an

d
p
e
rc

e
n

ta
g
e

o
f

W
N

V
-p

o
si

ti
v
e

p
e
r

k
il
o
g
ra

m
p
e
r

k
il
o
g
ra

m
(s

p
e
ci

Þ
c

h
u
m

id
it

y
).

Table 3. RMSE of the LOOTCV GLMs versus RMSE of the full
best-fit GLMs

Model LOOTCV RMSE Full GLM RMSE

1 4.68 4.23
2 4.79 4.23
3 4.65 4.35
4 4.75 4.35
5 4.70 4.35
6 4.66 4.36
7 4.73 4.37
8 5.04 4.40
9 5.08 4.48

10 4.57 4.46

The models are ordered as in Table 2. Units are annual percentage
of WNV-positive Culex pools.
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poral cross-validation and spatially partitioned analy-
sis these associations seem robust in both time and
space.

West Nile virus activity, as indicated by the yearly
percentage of WNV-positive Culex pools, tends to be
greater in western Suffolk County (Fig. 2) where
summer temperatures are hotter and hydrological
conditions are drier year-round (Fig. 3). In fact the
year-to-year variability of hydrological conditions at
any grid cell is much less than the eastÐwest differ-
ences among grid cells (data not shown). However,
the anomaly analysis presented here accounts for

these spatial differences of environmental conditions
and the results of this analysis are similar to that of the
full GLM.

Although the anomaly analysis is revealing, it is
worth noting that mosquitoes do not respond to anom-
alies, per se (e.g., monthly anomalies of temperature).
Mosquitoes respond to the actual ambient tempera-
tures. If the environmental conditions in the western
portion of the island are more hospitable to a given
Culex species, then using monthly anomalies, which to
a certain extent weights all localities equally, is not as
informative as using raw monthly data. However, that
the anomalies and raw data generally produce similar
results indicates that the associations between WNV
activity and meteorological and hydrological condi-
tions are not merely a consequence of their common
spatial covariability with some other “real” driver.

In truth, the best-Þtting Þve-variable GLMs delin-
eate relationships more complex than a simple eastÐ
west gradient. The inclusion of wet winter land sur-
face conditions, even though year-round conditions
are drier in the west than in the east, also indicates that
these multivariable models capture the effects of local
interannual (temporal) variability on WNV activity. If
these GLMs were merely describing the geographic
trendofWNVactivity, then theywould select fordrier
winter conditions.

The results with the two Mosaic model estimates of
soil moisture conditions, L1SM and RZSM, were very
similar. This indicates that future analyses need only
include one of these measures.
Biological Implications.These Þndings have several

biological implications. One could envision that the
wet winter conditions and warm wet spring conditions
facilitate earlier Culex mosquito activity and an early
increase of mosquito abundance. Drier summers
might then favor the congregation of birds and mos-
quitoes around remaining eutrophic water resources
that supportCx. pipiensandCx. restuansbreeding. This
might enable enzootic ampliÞcation of WNV among
the congregated vectors and hosts (Shaman 2007).
Previous analyses also have found evidence of height-
ened WNV activity in Suffolk County when water
resources during summer are limited (Rochlin et al.
2009). These inferences of how meteorological and

Fig. 4. LOOTCV GLM predictions for the best-Þt parameter combination (left; top line of Table 2). Full GLM predictions
for the same best-Þt parameter combination (right). The observations and GLM predictions are plotted and ordered in pairs
by the latter variable from least to greatest.

Fig. 5. (Top) Correlation of annual percentage of Culex
pools testing positive for WNV among Suffolk County grid
cell sites plotted as a function of distance, 2001Ð2009. (Bot-
tom) Same as for top but calculated for the residuals of the
best-Þt GLM for all of Suffolk County (see Table 2). The line
with circles shows the average correlation at each distance.
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hydrological conditions affectCulexbiology and WNV
transmission need to be further tested in the Þeld.

The overall eastÐwest spatial gradient of WNV ac-
tivity in Suffolk County (Fig. 2) may in part be due to
the strong spatial gradients of mean meteorological
and hydrological conditions (Fig. 3). These conditions
no doubt inßuence the distribution and local compo-
sition of Culex mosquito species. For example, if the
environmental conditions, including the prevalence of
saltwater marshes, in western Suffolk County favor a
higher ratio of Cx. pipiens and Cx. restuans to Cx.
salinarius; and if Cx. pipiens and Cx. restuans are the
more efÞcient enzootic vectors of WNV, then western
Suffolk County would logically have more WNV ac-
tivity. Such environmental inßuences onCulex species
composition may occur in both space and time, be-
cause local year-to-year changes in the environment
may make an area more or less hospitable to the
proliferation of each Culex species. It is thus possible
that hydrological and meteorological conditions affect
the spatialÐtemporal distribution of WNV activity not
only by modulating the breeding success, rates of
activity, and contact with avian ampliÞcation hosts of
a given Culex species but also by changing local Culex
and avian host species composition. This potential
linkage between environmental conditions and spe-
cies composition across Suffolk County needs to be
explored further and compared with other potential
drivers, including differences in ßora, water manage-
ment practices (e.g., the distribution of catch basins),
and land use practices.

The meteorological and hydrological conditions fa-
vorable to WNV activity, as determined here, may
provide a means for identifying whichCulex species is
principally responsible for WNV ampliÞcation in Suf-
folk County. That is, by determining theCulex species
that thrives best through a wet winter, wet and warm
spring, and dry summer, it could be inferred that this
species is the dominant enzootic vector when WNV
prevalence increases. Of course, this issue also could
be examined in the laboratory by pooling Culex mos-
quito collections by species, rather than genus, before
assaying for WNV.

Ouranalysis focusesonWNVpresenceamongpools
of assayed Culex mosquitoes, a metric that does not
necessarily correspond directly with WNV transmis-
sion rates to humans. Maintenance of WNV in the
North American environment is generally attributed
to enzootic transmission among ornithophilic Culex
mosquitoes and avian hosts. A hypothesized switch of
the feeding preference of Cx. pipiens from birds to
mammals during summer (Spielman 2001) may enable
this mosquito species to act as both enzootic and
bridge vector. Other Culex species also have been
shown to seasonally switch from blood feeding on
avian to mammalian hosts (Edman and Taylor 1968) or
to feed more generally on both birds and mammals
(Niebylski and Meek 1992; Apperson et al. 2004). The
degree to which Cx. pipiens, Cx. restuans, and Cx.
salinarius participates in the transmission of WNV to
humans will depend on mosquito feeding patterns,
individual species vector competence, and the avail-

able host species composition, as well as environmen-
tal conditions.
Prediction ofWNVActivity.Documentation of am-

pliÞcation in the Þeld, even on a limited basis, can be
difÞcult, costly, and time-consuming.Analyses, suchas
the one presented here, provide preliminary insight
into how WNV transmission dynamics respond to the
intraseasonal and interannual variability of meteoro-
logical and hydrological conditions. The Þndings sug-
gest that the gross distribution of WNV is linked to
climate, which in part determines habitat and Culex
species distribution and prevalence. Furthermore, the
year-to-year variability of WNV activity is associated
with local meteorological and hydrological conditions
and WNV ampliÞcation is most closely linked to these
conditions at speciÞc times of years.

Figure 4 illustrates both the utility and limitations of
the best-Þt model. The GLM predictions are able dis-
criminate areas with the greatest WNV activity from
thosewith lesser activity.All gridcell-yearswith 
10%
observed WNV positiveCulex pools are partitioned to
the right in each plot and, for the full GLM, are as-
sociated with predictions of 
5% WNV-positiveCulex
pools. This indicates that the GLM can identify areas
at risk for intense WNV activity. However, observa-
tions of 1-10% WNV-positiveCulexpools are scattered
throughout all levels of GLM prediction, which indi-
cates that the model is not capable of distinguishing
moderate WNV activity from no WNV activity at all.

Accurate identiÞcation of areas at risk for greater
than moderate WNV activity could ostensibly help
public health planning and WNV control. The best-Þt
GLM has built-in lead times in that all meteorological
and hydrological conditions associated with WNV ac-
tivity occur before the peak WNV transmission season
(Fig. 1). Thus, GLM predictions of WNV activity
could be used to develop control strategies that more
effectively reduce infectious mosquito numbers and
WNV transmission to humans. The next steps will be
to validate this model prognostically in the coming
years and then use it to focus control measures in both
space and time.
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