Applied Biostatistics

New health studies appear in the news every day. But how do we know if the latest drug or intervention actually has merit? Biostatistics is the key. It offers crucial tools for evaluating the significance or impact of public health research and interventions.

But with demand for biostatisticians far exceeding the supply, current and future public health research is put at risk. The Certificate in Applied Biostatistics seeks to address this shortage by offering specialized interdisciplinary training in biostatistics to MPH students from other disciplines.

Graduates will not only be able to interpret results but also convey them in clear written and oral presentations suitable for non-expert audiences – a necessary skill for translating science into action. This program will augment a graduate’s discipline and open new professional opportunities, such as serving as a statistical consultant or as a technical resource person in field and programmatic studies.

Admissions Eligibility

Applied Biostatistics is open to Columbia MPH students in:

Environmental Health Sciences
Epidemiology
Health Policy and Management
Population & Family Health
Sociomedical Sciences

The program requires applicants to have taken one semester of calculus and a score in the 75th percentile or higher on the Quantitative Reasoning Section of the GRE. Due to course requirements, the certificate is most compatible for students in Environmental Health Sciences, Epidemiology, and Population & Family Health.

Learn More

Visit the Certificates Database to learn more about core and credit requirements.

Sample Courses

Categorical Data Analysis

A comprehensive overview of methods of analysis for binary and other discrete response data, with applications to epidemiological and clinical studies. It is a second level course that presumes some knowledge of applied statistics and epidemiology. Topics discussed include 2 × 2 tables, m × 2 tables, tests of independence, measures of association, power and sample size determination, stratification and matching in design and analysis, interrater agreement, logistic regression analysis.

Applied Regression II 

This course will introduce the statistical methods for analyzing censored data, non-normally distributed response data, and repeated measurements data that are commonly encountered in medical and public health research. Topics include estimation and comparison of survival curves, regression models for survival data, logit models, log-linear models, and generalized estimating equations. Examples are drawn from the health sciences.

Related Certificates

Comparative Effectiveness Outcomes Research
Public Health Informatics
Public Health Research Methods

Related Links

BEST Diversity Program